一种有效的过滤图像垃圾邮件的方法

Ngo Phuong Nhung, Tu Minh Phuong
{"title":"一种有效的过滤图像垃圾邮件的方法","authors":"Ngo Phuong Nhung, Tu Minh Phuong","doi":"10.1109/RIVF.2007.369141","DOIUrl":null,"url":null,"abstract":"Spam e-mail with advertisement text embedded in images presents a great challenge to anti-spam filters. In this paper, we describe a fast method to detect image-based spam e- mail. Using simple edge-based features, the method computes a vector of similarity scores between an image and a set of templates. This similarity vector is then used with support vector machines to separate spam images from other common categories of images. Our method does not require computationally expensive OCR or even text extraction from images. Empirical results show that the method is fast and has good classification accuracy.","PeriodicalId":158887,"journal":{"name":"2007 IEEE International Conference on Research, Innovation and Vision for the Future","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"An Efficient Method for Filtering Image-Based Spam\",\"authors\":\"Ngo Phuong Nhung, Tu Minh Phuong\",\"doi\":\"10.1109/RIVF.2007.369141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spam e-mail with advertisement text embedded in images presents a great challenge to anti-spam filters. In this paper, we describe a fast method to detect image-based spam e- mail. Using simple edge-based features, the method computes a vector of similarity scores between an image and a set of templates. This similarity vector is then used with support vector machines to separate spam images from other common categories of images. Our method does not require computationally expensive OCR or even text extraction from images. Empirical results show that the method is fast and has good classification accuracy.\",\"PeriodicalId\":158887,\"journal\":{\"name\":\"2007 IEEE International Conference on Research, Innovation and Vision for the Future\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Conference on Research, Innovation and Vision for the Future\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RIVF.2007.369141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Research, Innovation and Vision for the Future","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF.2007.369141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在图像中嵌入广告文本的垃圾邮件给反垃圾邮件过滤器带来了巨大的挑战。本文描述了一种快速检测图像垃圾邮件的方法。该方法使用简单的基于边缘的特征,计算图像和一组模板之间的相似性得分向量。然后将这个相似度向量与支持向量机一起用于将垃圾图像与其他常见图像类别分开。我们的方法不需要计算昂贵的OCR,甚至不需要从图像中提取文本。实验结果表明,该方法速度快,分类精度高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Efficient Method for Filtering Image-Based Spam
Spam e-mail with advertisement text embedded in images presents a great challenge to anti-spam filters. In this paper, we describe a fast method to detect image-based spam e- mail. Using simple edge-based features, the method computes a vector of similarity scores between an image and a set of templates. This similarity vector is then used with support vector machines to separate spam images from other common categories of images. Our method does not require computationally expensive OCR or even text extraction from images. Empirical results show that the method is fast and has good classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Gaussian Mixture Model for Mobile Location Prediction A Comparative Study on Vietnamese Text Classification Methods New Recombination Operator in Genetic Algorithm For Solving the Bounded Diameter Minimum Spanning Tree Problem A Hybrid Approach for Real Time Domains Towards Quantum Key Distribution System using Homodyne Detection with Differential Time-Multiplexed Reference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1