异构信息网络上的主动学习:一种多臂强盗方法

Doris Xin, Ahmed El-Kishky, De Liao, Brandon Norick, Jiawei Han
{"title":"异构信息网络上的主动学习:一种多臂强盗方法","authors":"Doris Xin, Ahmed El-Kishky, De Liao, Brandon Norick, Jiawei Han","doi":"10.1109/ICDM.2018.00184","DOIUrl":null,"url":null,"abstract":"Active learning exploits inherent structures in the unlabeled data to minimize the number of labels required to train an accurate model. It enables effective machine learning in applications with high labeling cost, such as document classification and drug response prediction. We investigate active learning on heterogeneous information networks, with the objective of obtaining accurate node classifications while minimizing the number of labeled nodes. Our proposed algorithm harnesses a multi-armed bandit (MAB) algorithm to determine network structures that identify the most important nodes to the classification task, accounting for node types and without assuming label assortativity. Evaluations on real-world network classification tasks demonstrate that our algorithm outperforms existing methods independent of the underlying classification model.","PeriodicalId":286444,"journal":{"name":"2018 IEEE International Conference on Data Mining (ICDM)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Active Learning on Heterogeneous Information Networks: A Multi-armed Bandit Approach\",\"authors\":\"Doris Xin, Ahmed El-Kishky, De Liao, Brandon Norick, Jiawei Han\",\"doi\":\"10.1109/ICDM.2018.00184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Active learning exploits inherent structures in the unlabeled data to minimize the number of labels required to train an accurate model. It enables effective machine learning in applications with high labeling cost, such as document classification and drug response prediction. We investigate active learning on heterogeneous information networks, with the objective of obtaining accurate node classifications while minimizing the number of labeled nodes. Our proposed algorithm harnesses a multi-armed bandit (MAB) algorithm to determine network structures that identify the most important nodes to the classification task, accounting for node types and without assuming label assortativity. Evaluations on real-world network classification tasks demonstrate that our algorithm outperforms existing methods independent of the underlying classification model.\",\"PeriodicalId\":286444,\"journal\":{\"name\":\"2018 IEEE International Conference on Data Mining (ICDM)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Data Mining (ICDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2018.00184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2018.00184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

主动学习利用未标记数据中的固有结构来最小化训练准确模型所需的标签数量。它可以在高标签成本的应用中实现有效的机器学习,例如文档分类和药物反应预测。我们研究了异构信息网络上的主动学习,目的是在最小化标记节点数量的同时获得准确的节点分类。我们提出的算法利用多臂强盗(MAB)算法来确定识别分类任务中最重要节点的网络结构,考虑节点类型且不假设标签分类性。对真实网络分类任务的评估表明,我们的算法优于现有的独立于底层分类模型的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Active Learning on Heterogeneous Information Networks: A Multi-armed Bandit Approach
Active learning exploits inherent structures in the unlabeled data to minimize the number of labels required to train an accurate model. It enables effective machine learning in applications with high labeling cost, such as document classification and drug response prediction. We investigate active learning on heterogeneous information networks, with the objective of obtaining accurate node classifications while minimizing the number of labeled nodes. Our proposed algorithm harnesses a multi-armed bandit (MAB) algorithm to determine network structures that identify the most important nodes to the classification task, accounting for node types and without assuming label assortativity. Evaluations on real-world network classification tasks demonstrate that our algorithm outperforms existing methods independent of the underlying classification model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Entire Regularization Path for Sparse Nonnegative Interaction Model Accelerating Experimental Design by Incorporating Experimenter Hunches Title Page i An Efficient Many-Class Active Learning Framework for Knowledge-Rich Domains Social Recommendation with Missing Not at Random Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1