{"title":"使用预训练深度模型的白细胞自动分类","authors":"Oğuzhan Katar, Ilhan Firat Kilincer","doi":"10.35377/saucis...1196934","DOIUrl":null,"url":null,"abstract":"White blood cells (WBCs), which are part of the immune system, help our body fight infections and other diseases. Certain diseases can cause our body to produce fewer WBCs than it needs. For this reason, WBCs are of great importance in the field of medical imaging. Artificial intelligence-based computer systems can assist experts in the analysis of WBCs. In this study, an approach is proposed for the automatic classification of WBCs over five different classes using a pre-trained model. ResNet-50, VGG-19, and MobileNet-V3-Small pre-trained models were trained with ImageNet weights. In the training, validation, and testing processes of the models, a public dataset containing 16,633 images and not having an even class distribution was used. While the ResNet-50 model reached 98.79% accuracy, the VGG-19 model reached 98.19% accuracy, the MobileNet-V3-Small model reached the highest accuracy rate with 98.86%. When the predictions of the MobileNet-V3-Small model are examined, it is seen that it is not affected by class dominance and can classify even the least sampled class images in the dataset correctly. WBCs were classified with high accuracy using the proposed pre-trained deep learning models. Experts can effectively use the proposed approach in the process of analyzing WBCs.","PeriodicalId":257636,"journal":{"name":"Sakarya University Journal of Computer and Information Sciences","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatic Classification of White Blood Cells Using Pre-Trained Deep Models\",\"authors\":\"Oğuzhan Katar, Ilhan Firat Kilincer\",\"doi\":\"10.35377/saucis...1196934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"White blood cells (WBCs), which are part of the immune system, help our body fight infections and other diseases. Certain diseases can cause our body to produce fewer WBCs than it needs. For this reason, WBCs are of great importance in the field of medical imaging. Artificial intelligence-based computer systems can assist experts in the analysis of WBCs. In this study, an approach is proposed for the automatic classification of WBCs over five different classes using a pre-trained model. ResNet-50, VGG-19, and MobileNet-V3-Small pre-trained models were trained with ImageNet weights. In the training, validation, and testing processes of the models, a public dataset containing 16,633 images and not having an even class distribution was used. While the ResNet-50 model reached 98.79% accuracy, the VGG-19 model reached 98.19% accuracy, the MobileNet-V3-Small model reached the highest accuracy rate with 98.86%. When the predictions of the MobileNet-V3-Small model are examined, it is seen that it is not affected by class dominance and can classify even the least sampled class images in the dataset correctly. WBCs were classified with high accuracy using the proposed pre-trained deep learning models. Experts can effectively use the proposed approach in the process of analyzing WBCs.\",\"PeriodicalId\":257636,\"journal\":{\"name\":\"Sakarya University Journal of Computer and Information Sciences\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sakarya University Journal of Computer and Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35377/saucis...1196934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sakarya University Journal of Computer and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35377/saucis...1196934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic Classification of White Blood Cells Using Pre-Trained Deep Models
White blood cells (WBCs), which are part of the immune system, help our body fight infections and other diseases. Certain diseases can cause our body to produce fewer WBCs than it needs. For this reason, WBCs are of great importance in the field of medical imaging. Artificial intelligence-based computer systems can assist experts in the analysis of WBCs. In this study, an approach is proposed for the automatic classification of WBCs over five different classes using a pre-trained model. ResNet-50, VGG-19, and MobileNet-V3-Small pre-trained models were trained with ImageNet weights. In the training, validation, and testing processes of the models, a public dataset containing 16,633 images and not having an even class distribution was used. While the ResNet-50 model reached 98.79% accuracy, the VGG-19 model reached 98.19% accuracy, the MobileNet-V3-Small model reached the highest accuracy rate with 98.86%. When the predictions of the MobileNet-V3-Small model are examined, it is seen that it is not affected by class dominance and can classify even the least sampled class images in the dataset correctly. WBCs were classified with high accuracy using the proposed pre-trained deep learning models. Experts can effectively use the proposed approach in the process of analyzing WBCs.