基于改进ω - k算法的高斜视SAR小孔径成像

Yuanyuan Huai, Yi Liang, M. Xing, Xiaorui Ma
{"title":"基于改进ω - k算法的高斜视SAR小孔径成像","authors":"Yuanyuan Huai, Yi Liang, M. Xing, Xiaorui Ma","doi":"10.1109/APSAR.2015.7306199","DOIUrl":null,"url":null,"abstract":"For high squint SAR small-aperture data imaging, the conventional Omega-K algorithm will confront two main problems. First, since the data support region (DSR) in the two-dimension (2-D) wavenumber domain is skew, the conventional algorithm cannot exploit the DSR efficiently enough and degrades the resolution when choosing the square region to process. Second, the small-aperture data can only offer short DSR of the azimuth position. When imaging in the azimuth distance domain, the images will result in serious blurring in azimuth direction unless padding large number of zeroes. Correspondingly, to solve such problems, the modified Omega-K algorithm contains mainly two parts, the “No-Squint” Processing, which corrects the skew DSR to maximize the selection area; And the Small-aperture data imaging processing, which enable the azimuth focus in wavenumber domain, eliminating the azimuth blurring. Experiments show the validity and effectiveness of the proposed algorithm.","PeriodicalId":350698,"journal":{"name":"2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Small-aperture imaging for high squint SAR based on modified Omega-K algorithm\",\"authors\":\"Yuanyuan Huai, Yi Liang, M. Xing, Xiaorui Ma\",\"doi\":\"10.1109/APSAR.2015.7306199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For high squint SAR small-aperture data imaging, the conventional Omega-K algorithm will confront two main problems. First, since the data support region (DSR) in the two-dimension (2-D) wavenumber domain is skew, the conventional algorithm cannot exploit the DSR efficiently enough and degrades the resolution when choosing the square region to process. Second, the small-aperture data can only offer short DSR of the azimuth position. When imaging in the azimuth distance domain, the images will result in serious blurring in azimuth direction unless padding large number of zeroes. Correspondingly, to solve such problems, the modified Omega-K algorithm contains mainly two parts, the “No-Squint” Processing, which corrects the skew DSR to maximize the selection area; And the Small-aperture data imaging processing, which enable the azimuth focus in wavenumber domain, eliminating the azimuth blurring. Experiments show the validity and effectiveness of the proposed algorithm.\",\"PeriodicalId\":350698,\"journal\":{\"name\":\"2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSAR.2015.7306199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSAR.2015.7306199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于高斜视SAR小孔径数据成像,传统的ω - k算法将面临两个主要问题。首先,由于二维波数域的数据支持区域(DSR)是倾斜的,传统算法不能充分利用DSR,并且在选择处理的方形区域时降低了分辨率。其次,小孔径数据只能提供较短的方位位置DSR。在方位角距离域成像时,除非填充大量的零,否则图像在方位角方向上会出现严重的模糊。相应地,为了解决这类问题,改进的Omega-K算法主要包含两个部分:“No-Squint”处理,对倾斜的DSR进行校正,使选择面积最大化;采用小孔径数据成像处理,使方位角聚焦在波数域,消除了方位角模糊。实验证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Small-aperture imaging for high squint SAR based on modified Omega-K algorithm
For high squint SAR small-aperture data imaging, the conventional Omega-K algorithm will confront two main problems. First, since the data support region (DSR) in the two-dimension (2-D) wavenumber domain is skew, the conventional algorithm cannot exploit the DSR efficiently enough and degrades the resolution when choosing the square region to process. Second, the small-aperture data can only offer short DSR of the azimuth position. When imaging in the azimuth distance domain, the images will result in serious blurring in azimuth direction unless padding large number of zeroes. Correspondingly, to solve such problems, the modified Omega-K algorithm contains mainly two parts, the “No-Squint” Processing, which corrects the skew DSR to maximize the selection area; And the Small-aperture data imaging processing, which enable the azimuth focus in wavenumber domain, eliminating the azimuth blurring. Experiments show the validity and effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-static MIMO-SAR three dimensional deformation measurement system Application of microwave imaging in regional deformation monitoring using ground based SAR River detection from SAR images SAR image synthesis with chirp scaling algorithm of 3D CAD model using EM simulator Electronic beam steering using PLL array for radar applications in W-band
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1