基于可伸缩点云的局部隐式函数重构

Sandro Lombardi, Martin R. Oswald, M. Pollefeys
{"title":"基于可伸缩点云的局部隐式函数重构","authors":"Sandro Lombardi, Martin R. Oswald, M. Pollefeys","doi":"10.1109/3DV50981.2020.00110","DOIUrl":null,"url":null,"abstract":"Surface reconstruction from point clouds has been a well-studied research topic with applications in computer vision and computer graphics. Recently, several learningbased methods were proposed for 3D shape representation through implicit functions which among others can be used for point cloud-based reconstruction. Although delivering compelling results for synthetic object datasets of overseeable size, they fail to represent larger scenes accurately, presumably due to the use of only one global latent code for encoding an entire scene or object. We propose to encode only parts of objects with features attached to unstructured point clouds. To this end we use a hierarchical feature map in 3D space, extracted from the input point clouds, with which local latent shape encodings can be queried at arbitrary positions. We use a permutohedral lattice to process the hierarchical feature maps sparsely and efficiently. This enables accurate and detailed point cloud-based reconstructions for large amounts of points in a time-efficient manner, showing good generalization capabilities across different datasets. Experiments on synthetic and real world datasets demonstrate the reconstruction capability of our method and compare favorably to state-of-the-art methods.","PeriodicalId":293399,"journal":{"name":"2020 International Conference on 3D Vision (3DV)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Scalable Point Cloud-based Reconstruction with Local Implicit Functions\",\"authors\":\"Sandro Lombardi, Martin R. Oswald, M. Pollefeys\",\"doi\":\"10.1109/3DV50981.2020.00110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface reconstruction from point clouds has been a well-studied research topic with applications in computer vision and computer graphics. Recently, several learningbased methods were proposed for 3D shape representation through implicit functions which among others can be used for point cloud-based reconstruction. Although delivering compelling results for synthetic object datasets of overseeable size, they fail to represent larger scenes accurately, presumably due to the use of only one global latent code for encoding an entire scene or object. We propose to encode only parts of objects with features attached to unstructured point clouds. To this end we use a hierarchical feature map in 3D space, extracted from the input point clouds, with which local latent shape encodings can be queried at arbitrary positions. We use a permutohedral lattice to process the hierarchical feature maps sparsely and efficiently. This enables accurate and detailed point cloud-based reconstructions for large amounts of points in a time-efficient manner, showing good generalization capabilities across different datasets. Experiments on synthetic and real world datasets demonstrate the reconstruction capability of our method and compare favorably to state-of-the-art methods.\",\"PeriodicalId\":293399,\"journal\":{\"name\":\"2020 International Conference on 3D Vision (3DV)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on 3D Vision (3DV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DV50981.2020.00110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on 3D Vision (3DV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV50981.2020.00110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

从点云中重建表面是一个被广泛研究的研究课题,在计算机视觉和计算机图形学中有着广泛的应用。近年来,人们提出了几种基于学习的隐式函数三维形状表示方法,这些方法可用于基于点云的三维形状重建。尽管对于可监督大小的合成对象数据集提供了令人信服的结果,但它们无法准确地表示更大的场景,可能是因为只使用了一个全局潜在代码来编码整个场景或对象。我们建议只编码具有非结构化点云特征的部分对象。为此,我们在三维空间中使用从输入点云中提取的分层特征图,利用该特征图可以在任意位置查询局部潜在形状编码。我们使用一种互面体晶格来稀疏高效地处理层次化特征映射。这使得精确和详细的基于点云的重建能够以一种高效的方式对大量的点进行重建,并在不同的数据集上显示出良好的泛化能力。在合成和真实世界数据集上的实验证明了我们的方法的重建能力,并与最先进的方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scalable Point Cloud-based Reconstruction with Local Implicit Functions
Surface reconstruction from point clouds has been a well-studied research topic with applications in computer vision and computer graphics. Recently, several learningbased methods were proposed for 3D shape representation through implicit functions which among others can be used for point cloud-based reconstruction. Although delivering compelling results for synthetic object datasets of overseeable size, they fail to represent larger scenes accurately, presumably due to the use of only one global latent code for encoding an entire scene or object. We propose to encode only parts of objects with features attached to unstructured point clouds. To this end we use a hierarchical feature map in 3D space, extracted from the input point clouds, with which local latent shape encodings can be queried at arbitrary positions. We use a permutohedral lattice to process the hierarchical feature maps sparsely and efficiently. This enables accurate and detailed point cloud-based reconstructions for large amounts of points in a time-efficient manner, showing good generalization capabilities across different datasets. Experiments on synthetic and real world datasets demonstrate the reconstruction capability of our method and compare favorably to state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Screen-space Regularization on Differentiable Rasterization Motion Annotation Programs: A Scalable Approach to Annotating Kinematic Articulations in Large 3D Shape Collections Two-Stage Relation Constraint for Semantic Segmentation of Point Clouds Time Shifted IMU Preintegration for Temporal Calibration in Incremental Visual-Inertial Initialization KeystoneDepth: History in 3D
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1