捷克语主体性词汇:实施与改进

Katerina Veselovská, Jan Hajic, J. Šindlerová
{"title":"捷克语主体性词汇:实施与改进","authors":"Katerina Veselovská, Jan Hajic, J. Šindlerová","doi":"10.21248/jlcl.29.2014.183","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to introduce the Czech subjectivity lexicon, a new lexical resource for sentiment analysis in Czech. We describe particular stages of the manual refinement of the lexicon and demonstrate its use in the state-of-the art polarity classifiers, namely the Maximum Entropy classifier. We test the success rate of the system enriched with the dictionary on different data sets, compare the results and suggest some further improvements of the lexicon-based classification system.","PeriodicalId":402489,"journal":{"name":"J. Lang. Technol. Comput. Linguistics","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Subjectivity Lexicon for Czech: Implementation and Improvements\",\"authors\":\"Katerina Veselovská, Jan Hajic, J. Šindlerová\",\"doi\":\"10.21248/jlcl.29.2014.183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to introduce the Czech subjectivity lexicon, a new lexical resource for sentiment analysis in Czech. We describe particular stages of the manual refinement of the lexicon and demonstrate its use in the state-of-the art polarity classifiers, namely the Maximum Entropy classifier. We test the success rate of the system enriched with the dictionary on different data sets, compare the results and suggest some further improvements of the lexicon-based classification system.\",\"PeriodicalId\":402489,\"journal\":{\"name\":\"J. Lang. Technol. Comput. Linguistics\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Lang. Technol. Comput. Linguistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21248/jlcl.29.2014.183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Lang. Technol. Comput. Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21248/jlcl.29.2014.183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文的目的是介绍捷克语主体性词汇,这是一种新的捷克语情感分析词汇资源。我们描述了人工细化词典的特定阶段,并演示了它在最先进的极性分类器(即最大熵分类器)中的使用。我们在不同的数据集上测试了基于词典的分类系统的成功率,比较了结果,并对基于词典的分类系统提出了一些进一步的改进建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Subjectivity Lexicon for Czech: Implementation and Improvements
The aim of this paper is to introduce the Czech subjectivity lexicon, a new lexical resource for sentiment analysis in Czech. We describe particular stages of the manual refinement of the lexicon and demonstrate its use in the state-of-the art polarity classifiers, namely the Maximum Entropy classifier. We test the success rate of the system enriched with the dictionary on different data sets, compare the results and suggest some further improvements of the lexicon-based classification system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aufbau eines Referenzkorpus zur deutschsprachigen internetbasierten Kommunikation als Zusatzkomponente für die Korpora im Projekt 'Digitales Wörterbuch der deutschen Sprache' (DWDS) Crowdsourcing the OCR Ground Truth of a German and French Cultural Heritage Corpus Comparison of OCR Accuracy on Early Printed Books using the Open Source Engines Calamari and OCRopus Ground Truth for training OCR engines on historical documents in German Fraktur and Early Modern Latin Supervised OCR Error Detection and Correction Using Statistical and Neural Machine Translation Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1