{"title":"DSMN:多路网络中链路预测的新方法","authors":"Samira Rafiee Samira Rafiee, Alireza Abdollahpouri","doi":"10.52547/itrc.14.3.19","DOIUrl":null,"url":null,"abstract":"— In a multiplex network, there exists different types of relationships between the same set of nodes such as people which have different accounts in online social networks. Previous researches have proved that in a multiplex network the structural features of different layers are interrelated. Therefore, effective use of information from other layers can improve link prediction accuracy in a specific layer. In this paper, we propose a new inter-layer similarity metric DSMN, for predicting missing links in multiplex networks. We then combine this metric with a strong intra-layer similarity metric to enhance the performance of link prediction. The efficiency of our proposed method has been evaluated on both real-world and synthetic networks and the experimental results indicate the outperformance of the proposed method in terms of prediction accuracy in comparison with similar methods","PeriodicalId":270455,"journal":{"name":"International Journal of Information and Communication Technology Research","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DSMN: A New Approach for Link Prediction in Multilplex Networks\",\"authors\":\"Samira Rafiee Samira Rafiee, Alireza Abdollahpouri\",\"doi\":\"10.52547/itrc.14.3.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"— In a multiplex network, there exists different types of relationships between the same set of nodes such as people which have different accounts in online social networks. Previous researches have proved that in a multiplex network the structural features of different layers are interrelated. Therefore, effective use of information from other layers can improve link prediction accuracy in a specific layer. In this paper, we propose a new inter-layer similarity metric DSMN, for predicting missing links in multiplex networks. We then combine this metric with a strong intra-layer similarity metric to enhance the performance of link prediction. The efficiency of our proposed method has been evaluated on both real-world and synthetic networks and the experimental results indicate the outperformance of the proposed method in terms of prediction accuracy in comparison with similar methods\",\"PeriodicalId\":270455,\"journal\":{\"name\":\"International Journal of Information and Communication Technology Research\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information and Communication Technology Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52547/itrc.14.3.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information and Communication Technology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/itrc.14.3.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DSMN: A New Approach for Link Prediction in Multilplex Networks
— In a multiplex network, there exists different types of relationships between the same set of nodes such as people which have different accounts in online social networks. Previous researches have proved that in a multiplex network the structural features of different layers are interrelated. Therefore, effective use of information from other layers can improve link prediction accuracy in a specific layer. In this paper, we propose a new inter-layer similarity metric DSMN, for predicting missing links in multiplex networks. We then combine this metric with a strong intra-layer similarity metric to enhance the performance of link prediction. The efficiency of our proposed method has been evaluated on both real-world and synthetic networks and the experimental results indicate the outperformance of the proposed method in terms of prediction accuracy in comparison with similar methods