M. Sepúlveda, K. Ralston-Hooper, Brian C. Sanchez, Amber Hopf-jannasch, S. D. Baker, N. Diaz, J. Adamec
{"title":"蛋白质组学和代谢组学技术在生态毒理学研究中的应用","authors":"M. Sepúlveda, K. Ralston-Hooper, Brian C. Sanchez, Amber Hopf-jannasch, S. D. Baker, N. Diaz, J. Adamec","doi":"10.1002/9780470744307.GAT215","DOIUrl":null,"url":null,"abstract":"Over the last decade, the environmental sciences have witnessed an incredible movement towards the utilization of high through-put molecular tools that are capable of detecting simultaneous changes of hundreds and even thousands of molecules and molecular components after exposure of organisms to different environmental stressors. These techniques have received lots of attention because they not only offer the potential to unravel novel mechanisms of physiological and toxic action, but they also are amenable for the discovery of biomarkers of exposure and effects. In this chapter we will review the state of knowledge of two of these holistic tools in ecotoxicological research: Proteomics and metabolomics. We will follow this review with a presentation of three of our own case studies utilizing proteomic and metabolomic tools: (i) Analysis of proteomic responses in fish exposed to different types of contaminants using GeneGo™; (ii) Comparison of proteomic and metabolomic responses in aquatic invertebrates exposed to herbicides; and (ii) Use of metabolomics to characterize egg quality in fish eating birds exposed to persistent organic pollutants. We will end with some ideas for future studies and research needs. \n \n \nKeywords: \n \nproteomics; \nmetabolomics; \necotoxicology; \nfish; \ninvertebrates; \nbirds; \naquatic; \nwildlife; \nbiomarkers; \ncontaminants; \ntoxicity; \npollution","PeriodicalId":325382,"journal":{"name":"General, Applied and Systems Toxicology","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Use of Proteomic and Metabolomic Techniques in Ecotoxicological Research\",\"authors\":\"M. Sepúlveda, K. Ralston-Hooper, Brian C. Sanchez, Amber Hopf-jannasch, S. D. Baker, N. Diaz, J. Adamec\",\"doi\":\"10.1002/9780470744307.GAT215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the last decade, the environmental sciences have witnessed an incredible movement towards the utilization of high through-put molecular tools that are capable of detecting simultaneous changes of hundreds and even thousands of molecules and molecular components after exposure of organisms to different environmental stressors. These techniques have received lots of attention because they not only offer the potential to unravel novel mechanisms of physiological and toxic action, but they also are amenable for the discovery of biomarkers of exposure and effects. In this chapter we will review the state of knowledge of two of these holistic tools in ecotoxicological research: Proteomics and metabolomics. We will follow this review with a presentation of three of our own case studies utilizing proteomic and metabolomic tools: (i) Analysis of proteomic responses in fish exposed to different types of contaminants using GeneGo™; (ii) Comparison of proteomic and metabolomic responses in aquatic invertebrates exposed to herbicides; and (ii) Use of metabolomics to characterize egg quality in fish eating birds exposed to persistent organic pollutants. We will end with some ideas for future studies and research needs. \\n \\n \\nKeywords: \\n \\nproteomics; \\nmetabolomics; \\necotoxicology; \\nfish; \\ninvertebrates; \\nbirds; \\naquatic; \\nwildlife; \\nbiomarkers; \\ncontaminants; \\ntoxicity; \\npollution\",\"PeriodicalId\":325382,\"journal\":{\"name\":\"General, Applied and Systems Toxicology\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General, Applied and Systems Toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/9780470744307.GAT215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General, Applied and Systems Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9780470744307.GAT215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Use of Proteomic and Metabolomic Techniques in Ecotoxicological Research
Over the last decade, the environmental sciences have witnessed an incredible movement towards the utilization of high through-put molecular tools that are capable of detecting simultaneous changes of hundreds and even thousands of molecules and molecular components after exposure of organisms to different environmental stressors. These techniques have received lots of attention because they not only offer the potential to unravel novel mechanisms of physiological and toxic action, but they also are amenable for the discovery of biomarkers of exposure and effects. In this chapter we will review the state of knowledge of two of these holistic tools in ecotoxicological research: Proteomics and metabolomics. We will follow this review with a presentation of three of our own case studies utilizing proteomic and metabolomic tools: (i) Analysis of proteomic responses in fish exposed to different types of contaminants using GeneGo™; (ii) Comparison of proteomic and metabolomic responses in aquatic invertebrates exposed to herbicides; and (ii) Use of metabolomics to characterize egg quality in fish eating birds exposed to persistent organic pollutants. We will end with some ideas for future studies and research needs.
Keywords:
proteomics;
metabolomics;
ecotoxicology;
fish;
invertebrates;
birds;
aquatic;
wildlife;
biomarkers;
contaminants;
toxicity;
pollution