基于Gmm-Hmm和DNN-HMM技术的土鲁语语音自动识别

Amoolya G, Arnold Sachith A Hans, V. R. Lakkavalli, Senthil Kumar Swami Durai
{"title":"基于Gmm-Hmm和DNN-HMM技术的土鲁语语音自动识别","authors":"Amoolya G, Arnold Sachith A Hans, V. R. Lakkavalli, Senthil Kumar Swami Durai","doi":"10.1109/ICACTA54488.2022.9753319","DOIUrl":null,"url":null,"abstract":"In this work a first Automatic Speech Recognition (ASR) for Tulu language is developed. Seven hours of speech database for Tulu is recorded from native speakers in natural conditions for read speech. Kaldi toolkit is employed to develop GMM-HMM and DNN-HMM based ASR systems. Different speech units are employed to build the system and a detailed set of experiments is carried out on the collected dataset. It was observed that because of the lesser data, monophone GMM-HMM models provide better word error rate (WER) when compared to triphone models. More data is required for the system to reach to better performance with triphones.","PeriodicalId":345370,"journal":{"name":"2022 International Conference on Advanced Computing Technologies and Applications (ICACTA)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic Speech Recognition for Tulu Language Using Gmm-Hmm and DNN-HMM Techniques\",\"authors\":\"Amoolya G, Arnold Sachith A Hans, V. R. Lakkavalli, Senthil Kumar Swami Durai\",\"doi\":\"10.1109/ICACTA54488.2022.9753319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work a first Automatic Speech Recognition (ASR) for Tulu language is developed. Seven hours of speech database for Tulu is recorded from native speakers in natural conditions for read speech. Kaldi toolkit is employed to develop GMM-HMM and DNN-HMM based ASR systems. Different speech units are employed to build the system and a detailed set of experiments is carried out on the collected dataset. It was observed that because of the lesser data, monophone GMM-HMM models provide better word error rate (WER) when compared to triphone models. More data is required for the system to reach to better performance with triphones.\",\"PeriodicalId\":345370,\"journal\":{\"name\":\"2022 International Conference on Advanced Computing Technologies and Applications (ICACTA)\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Advanced Computing Technologies and Applications (ICACTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACTA54488.2022.9753319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Advanced Computing Technologies and Applications (ICACTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACTA54488.2022.9753319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文首次开发了针对吐鲁语的自动语音识别系统。图鲁语的7小时语音数据库记录了母语人士在自然条件下的阅读语音。利用Kaldi工具箱开发基于GMM-HMM和DNN-HMM的ASR系统。采用不同的语音单元构建系统,并在收集到的数据集上进行了详细的实验。我们观察到,由于数据较少,单声道GMM-HMM模型比三声道模型提供更好的单词错误率(WER)。系统需要更多的数据才能达到更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Speech Recognition for Tulu Language Using Gmm-Hmm and DNN-HMM Techniques
In this work a first Automatic Speech Recognition (ASR) for Tulu language is developed. Seven hours of speech database for Tulu is recorded from native speakers in natural conditions for read speech. Kaldi toolkit is employed to develop GMM-HMM and DNN-HMM based ASR systems. Different speech units are employed to build the system and a detailed set of experiments is carried out on the collected dataset. It was observed that because of the lesser data, monophone GMM-HMM models provide better word error rate (WER) when compared to triphone models. More data is required for the system to reach to better performance with triphones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Building Dynamic permutation based Privacy Preservation Model with Block Chain Technology for IoT Healthcare Sector DCNET: A Novel Implementation of Gastric Cancer Detection System through Deep Learning Convolution Networks Customer Segmentation Based on Sentimental Analysis Pigment Epithelial Detachment Detection: A Review of Imaging Techniques and Algorithms Soft Computing based Brain Tumor Categorization with Machine Learning Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1