使用数字时间乘法器的时域乘加器用于CNN处理器在28纳米CMOS

Xutong Wu, T. Siriburanon, R. Staszewski
{"title":"使用数字时间乘法器的时域乘加器用于CNN处理器在28纳米CMOS","authors":"Xutong Wu, T. Siriburanon, R. Staszewski","doi":"10.1109/ISSC49989.2020.9180202","DOIUrl":null,"url":null,"abstract":"This paper proposes a time-domain multiply-accumulator (MAC) circuit exploiting the use of a digital-to-time multiplier (DTM) unit for performing convolutional operations and designed in 28nm CMOS. As the foundational calculation of state-of-the-art convolutional neural network (CNN) models, convolutional operation could normally be executed millions of times in one CNN task. The proposed circuit is designed to support this large computational resource requirement during the CNN computations. It is running in time-domain with 6-bit resolution (1 sign bit) and performs calculations based on corresponding time delays. Compared with other analog-domain propositions, time-domain designs perform better, with higher operating frequencies up to 50 MHz. In schematic simulations, the proposed DTM unit, operating with 5 bits, achieves 0.1 GOPS ideal throughput and consumes 74.79 µW at 1.0V supply.","PeriodicalId":351013,"journal":{"name":"2020 31st Irish Signals and Systems Conference (ISSC)","volume":"256 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-Domain Multiply-Accumulator using Digital-to-Time Multiplier for CNN Processors in 28-nm CMOS\",\"authors\":\"Xutong Wu, T. Siriburanon, R. Staszewski\",\"doi\":\"10.1109/ISSC49989.2020.9180202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a time-domain multiply-accumulator (MAC) circuit exploiting the use of a digital-to-time multiplier (DTM) unit for performing convolutional operations and designed in 28nm CMOS. As the foundational calculation of state-of-the-art convolutional neural network (CNN) models, convolutional operation could normally be executed millions of times in one CNN task. The proposed circuit is designed to support this large computational resource requirement during the CNN computations. It is running in time-domain with 6-bit resolution (1 sign bit) and performs calculations based on corresponding time delays. Compared with other analog-domain propositions, time-domain designs perform better, with higher operating frequencies up to 50 MHz. In schematic simulations, the proposed DTM unit, operating with 5 bits, achieves 0.1 GOPS ideal throughput and consumes 74.79 µW at 1.0V supply.\",\"PeriodicalId\":351013,\"journal\":{\"name\":\"2020 31st Irish Signals and Systems Conference (ISSC)\",\"volume\":\"256 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 31st Irish Signals and Systems Conference (ISSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSC49989.2020.9180202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 31st Irish Signals and Systems Conference (ISSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSC49989.2020.9180202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用数字时间乘法器(DTM)单元进行卷积运算的时域乘加器(MAC)电路,并设计在28nm CMOS上。卷积运算作为最先进的卷积神经网络(CNN)模型的基础计算,在一个CNN任务中通常可以执行数百万次。所提出的电路旨在支持CNN计算期间的大量计算资源需求。它在6位分辨率(1符号位)的时域中运行,并根据相应的时间延迟进行计算。与其他模拟域方案相比,时域设计性能更好,工作频率高达50 MHz。在原理图仿真中,所提出的DTM单元以5位工作,在1.0V电源下达到0.1 GOPS的理想吞吐量和74.79µW的功耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Time-Domain Multiply-Accumulator using Digital-to-Time Multiplier for CNN Processors in 28-nm CMOS
This paper proposes a time-domain multiply-accumulator (MAC) circuit exploiting the use of a digital-to-time multiplier (DTM) unit for performing convolutional operations and designed in 28nm CMOS. As the foundational calculation of state-of-the-art convolutional neural network (CNN) models, convolutional operation could normally be executed millions of times in one CNN task. The proposed circuit is designed to support this large computational resource requirement during the CNN computations. It is running in time-domain with 6-bit resolution (1 sign bit) and performs calculations based on corresponding time delays. Compared with other analog-domain propositions, time-domain designs perform better, with higher operating frequencies up to 50 MHz. In schematic simulations, the proposed DTM unit, operating with 5 bits, achieves 0.1 GOPS ideal throughput and consumes 74.79 µW at 1.0V supply.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of Intra-Subject Variation in Gait Analysis on ASD Classification Performance in Machine Learning Models Practical Implementation of APTs on PTP Time Synchronisation Networks Not Everything You Read Is True! Fake News Detection using Machine learning Algorithms Semi-Supervised Learning with Generative Adversarial Networks for Pathological Speech Classification Reduced Complexity Approach for Uplink Rate Trajectory Prediction in Mobile Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1