Dongju Chae, Joonsung Kim, Youngsok Kim, Jangwoo Kim, Kyung-Ah Chang, Sang-Bum Suh, Hyogun Lee
{"title":"CloudSwap:移动设备的云辅助交换机制","authors":"Dongju Chae, Joonsung Kim, Youngsok Kim, Jangwoo Kim, Kyung-Ah Chang, Sang-Bum Suh, Hyogun Lee","doi":"10.1109/CCGrid.2016.22","DOIUrl":null,"url":null,"abstract":"Application caching is a key feature to enable fast application switches for mobile devices by caching the entire memory pages of applications in the device's physical memory. However, application caching requires a prohibitive amount of memory unless a swap feature is employed to maintain only the working sets of the applications in memory. Unfortunately, mobile devices often disable the invaluable swap feature as it can severely decrease the flash-based local storage device's already marginal lifespan due to the increased writes to the device. As a result, modern mobile devices suffering from the insufficient memory space end up killing memory-hungry applications and keeping only a few applications in the memory. In this paper, we propose CloudSwap, a fast and robust swap mechanism for mobile devices to enable the memory-oblivious application caching. The key idea of CloudSwap is to use the fast local storage as a cache of read-intensive swap pages, while storing prefetch-enabled, write-intensive swap pages in a cloud storage. To preserve the lifespan of the local storage, CloudSwap minimizes the number of writes to the local storage by storing the modified portions of the locally swapped pages in a cloud. To reduce the remote swap-in latency, CloudSwap exploits two cloud-assisted prefetch schemes, the app-aware read-ahead scheme and the access pattern-aware prefetch scheme. Our evaluation shows that the performance of CloudSwap is comparable to a fast, but lifespan-critical local swap system, with only 18% lifespan reduction, compared to the local swap system's 85% lifespan reduction.","PeriodicalId":103641,"journal":{"name":"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)","volume":"310 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"CloudSwap: A Cloud-Assisted Swap Mechanism for Mobile Devices\",\"authors\":\"Dongju Chae, Joonsung Kim, Youngsok Kim, Jangwoo Kim, Kyung-Ah Chang, Sang-Bum Suh, Hyogun Lee\",\"doi\":\"10.1109/CCGrid.2016.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Application caching is a key feature to enable fast application switches for mobile devices by caching the entire memory pages of applications in the device's physical memory. However, application caching requires a prohibitive amount of memory unless a swap feature is employed to maintain only the working sets of the applications in memory. Unfortunately, mobile devices often disable the invaluable swap feature as it can severely decrease the flash-based local storage device's already marginal lifespan due to the increased writes to the device. As a result, modern mobile devices suffering from the insufficient memory space end up killing memory-hungry applications and keeping only a few applications in the memory. In this paper, we propose CloudSwap, a fast and robust swap mechanism for mobile devices to enable the memory-oblivious application caching. The key idea of CloudSwap is to use the fast local storage as a cache of read-intensive swap pages, while storing prefetch-enabled, write-intensive swap pages in a cloud storage. To preserve the lifespan of the local storage, CloudSwap minimizes the number of writes to the local storage by storing the modified portions of the locally swapped pages in a cloud. To reduce the remote swap-in latency, CloudSwap exploits two cloud-assisted prefetch schemes, the app-aware read-ahead scheme and the access pattern-aware prefetch scheme. Our evaluation shows that the performance of CloudSwap is comparable to a fast, but lifespan-critical local swap system, with only 18% lifespan reduction, compared to the local swap system's 85% lifespan reduction.\",\"PeriodicalId\":103641,\"journal\":{\"name\":\"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)\",\"volume\":\"310 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGrid.2016.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid.2016.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CloudSwap: A Cloud-Assisted Swap Mechanism for Mobile Devices
Application caching is a key feature to enable fast application switches for mobile devices by caching the entire memory pages of applications in the device's physical memory. However, application caching requires a prohibitive amount of memory unless a swap feature is employed to maintain only the working sets of the applications in memory. Unfortunately, mobile devices often disable the invaluable swap feature as it can severely decrease the flash-based local storage device's already marginal lifespan due to the increased writes to the device. As a result, modern mobile devices suffering from the insufficient memory space end up killing memory-hungry applications and keeping only a few applications in the memory. In this paper, we propose CloudSwap, a fast and robust swap mechanism for mobile devices to enable the memory-oblivious application caching. The key idea of CloudSwap is to use the fast local storage as a cache of read-intensive swap pages, while storing prefetch-enabled, write-intensive swap pages in a cloud storage. To preserve the lifespan of the local storage, CloudSwap minimizes the number of writes to the local storage by storing the modified portions of the locally swapped pages in a cloud. To reduce the remote swap-in latency, CloudSwap exploits two cloud-assisted prefetch schemes, the app-aware read-ahead scheme and the access pattern-aware prefetch scheme. Our evaluation shows that the performance of CloudSwap is comparable to a fast, but lifespan-critical local swap system, with only 18% lifespan reduction, compared to the local swap system's 85% lifespan reduction.