情景记忆:N-back任务

A. Beukers, K. Norman, J. Cohen
{"title":"情景记忆:N-back任务","authors":"A. Beukers, K. Norman, J. Cohen","doi":"10.32470/ccn.2019.1311-0","DOIUrl":null,"url":null,"abstract":"We present a model of how working memory (WM) and episodic memory (EM) interact in the n-back task. Contrary to previous models in which information is actively maintained in WM, our model posits that information about previous stimuli is retained exclusively in EM. Unlike WM-based active maintenance, which has limited maintenance capacity, EM-based storage has unlimited storage capacity but is subject to proactive interference. Using the model we show that benchmark phenomena ordinarily attributed to use of a limited-capacity WM system (the set size effect and the lure interference effect) can also arise in a model with no such maintenance constraints.","PeriodicalId":281121,"journal":{"name":"2019 Conference on Cognitive Computational Neuroscience","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Working with Episodic Memory: The N-back Task\",\"authors\":\"A. Beukers, K. Norman, J. Cohen\",\"doi\":\"10.32470/ccn.2019.1311-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a model of how working memory (WM) and episodic memory (EM) interact in the n-back task. Contrary to previous models in which information is actively maintained in WM, our model posits that information about previous stimuli is retained exclusively in EM. Unlike WM-based active maintenance, which has limited maintenance capacity, EM-based storage has unlimited storage capacity but is subject to proactive interference. Using the model we show that benchmark phenomena ordinarily attributed to use of a limited-capacity WM system (the set size effect and the lure interference effect) can also arise in a model with no such maintenance constraints.\",\"PeriodicalId\":281121,\"journal\":{\"name\":\"2019 Conference on Cognitive Computational Neuroscience\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Conference on Cognitive Computational Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32470/ccn.2019.1311-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Conference on Cognitive Computational Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32470/ccn.2019.1311-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一个工作记忆(WM)和情景记忆(EM)在n-back任务中如何相互作用的模型。与之前在WM中主动维护信息的模型相反,我们的模型假设有关先前刺激的信息仅保留在EM中。与基于WM的主动维护有限的维护能力不同,基于EM的存储具有无限的存储容量,但会受到主动干扰。使用该模型,我们表明通常归因于使用有限容量WM系统的基准现象(集大小效应和诱饵干扰效应)也可以在没有此类维护约束的模型中出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Working with Episodic Memory: The N-back Task
We present a model of how working memory (WM) and episodic memory (EM) interact in the n-back task. Contrary to previous models in which information is actively maintained in WM, our model posits that information about previous stimuli is retained exclusively in EM. Unlike WM-based active maintenance, which has limited maintenance capacity, EM-based storage has unlimited storage capacity but is subject to proactive interference. Using the model we show that benchmark phenomena ordinarily attributed to use of a limited-capacity WM system (the set size effect and the lure interference effect) can also arise in a model with no such maintenance constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Narratives as Networks: Predicting Memory from the Structure of Naturalistic Events Subtractive gating improves generalization in working memory tasks Do LSTMs know about Principle C? Unfolding of multisensory inference in the brain and behavior Adversarial Training of Neural Encoding Models on Population Spike Trains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1