{"title":"基于半自动方法构建程序的答案集编程方法","authors":"Flavio Everardo , Mauricio Osorio","doi":"10.1016/j.entcs.2020.10.004","DOIUrl":null,"url":null,"abstract":"<div><p>Answer Set Programming (ASP) is a successful rule-based formalism for modeling and solving knowledge-intense combinatorial (optimization) problems. Despite its success in both academic and industry, open challenges like automatic source code optimization, and software engineering remains. This is because a problem encoded into an ASP might not have the desired solving performance compared to an equivalent representation. Motivated by these two challenges, this paper has three main contributions. First, we propose a developing process towards a methodology to implement ASP programs, being faithful to existing methods. Second, we present ASP encodings that serve as the basis from the developing process. Third, we demonstrate the use of ASP to reverse the standard solving process. That is, knowing answer sets in advance, and desired strong equivalent properties, “we” exhaustively reconstruct ASP programs if they exist. This paper was originally motivated by the search of propositional formulas (if they exist) that represent the semantics of a new aggregate operator. Particularly, a parity aggregate. This aggregate comes as an improvement from the already existing parity (<span>xor</span>) constraints from <em>xorro</em>, where lacks expressiveness, even though these constraints fit perfectly for reasoning modes like sampling or model counting. To this end, this extended version covers the fundaments from parity constraints as well as the <em>xorro</em> system. Hence, we delve a little more in the examples and the proposed methodology over parity constraints. Finally, we discuss our results by showing the only representation available, that satisfies different properties from the classical logic <span>xor</span> operator, which is also consistent with the semantics of parity constraints from <em>xorro</em>.</p></div>","PeriodicalId":38770,"journal":{"name":"Electronic Notes in Theoretical Computer Science","volume":"354 ","pages":"Pages 29-44"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.entcs.2020.10.004","citationCount":"1","resultStr":"{\"title\":\"Towards an Answer Set Programming Methodology for Constructing Programs Following a Semi-Automatic Approach – Extended and Revised version\",\"authors\":\"Flavio Everardo , Mauricio Osorio\",\"doi\":\"10.1016/j.entcs.2020.10.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Answer Set Programming (ASP) is a successful rule-based formalism for modeling and solving knowledge-intense combinatorial (optimization) problems. Despite its success in both academic and industry, open challenges like automatic source code optimization, and software engineering remains. This is because a problem encoded into an ASP might not have the desired solving performance compared to an equivalent representation. Motivated by these two challenges, this paper has three main contributions. First, we propose a developing process towards a methodology to implement ASP programs, being faithful to existing methods. Second, we present ASP encodings that serve as the basis from the developing process. Third, we demonstrate the use of ASP to reverse the standard solving process. That is, knowing answer sets in advance, and desired strong equivalent properties, “we” exhaustively reconstruct ASP programs if they exist. This paper was originally motivated by the search of propositional formulas (if they exist) that represent the semantics of a new aggregate operator. Particularly, a parity aggregate. This aggregate comes as an improvement from the already existing parity (<span>xor</span>) constraints from <em>xorro</em>, where lacks expressiveness, even though these constraints fit perfectly for reasoning modes like sampling or model counting. To this end, this extended version covers the fundaments from parity constraints as well as the <em>xorro</em> system. Hence, we delve a little more in the examples and the proposed methodology over parity constraints. Finally, we discuss our results by showing the only representation available, that satisfies different properties from the classical logic <span>xor</span> operator, which is also consistent with the semantics of parity constraints from <em>xorro</em>.</p></div>\",\"PeriodicalId\":38770,\"journal\":{\"name\":\"Electronic Notes in Theoretical Computer Science\",\"volume\":\"354 \",\"pages\":\"Pages 29-44\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.entcs.2020.10.004\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Notes in Theoretical Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1571066120300803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Notes in Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571066120300803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Towards an Answer Set Programming Methodology for Constructing Programs Following a Semi-Automatic Approach – Extended and Revised version
Answer Set Programming (ASP) is a successful rule-based formalism for modeling and solving knowledge-intense combinatorial (optimization) problems. Despite its success in both academic and industry, open challenges like automatic source code optimization, and software engineering remains. This is because a problem encoded into an ASP might not have the desired solving performance compared to an equivalent representation. Motivated by these two challenges, this paper has three main contributions. First, we propose a developing process towards a methodology to implement ASP programs, being faithful to existing methods. Second, we present ASP encodings that serve as the basis from the developing process. Third, we demonstrate the use of ASP to reverse the standard solving process. That is, knowing answer sets in advance, and desired strong equivalent properties, “we” exhaustively reconstruct ASP programs if they exist. This paper was originally motivated by the search of propositional formulas (if they exist) that represent the semantics of a new aggregate operator. Particularly, a parity aggregate. This aggregate comes as an improvement from the already existing parity (xor) constraints from xorro, where lacks expressiveness, even though these constraints fit perfectly for reasoning modes like sampling or model counting. To this end, this extended version covers the fundaments from parity constraints as well as the xorro system. Hence, we delve a little more in the examples and the proposed methodology over parity constraints. Finally, we discuss our results by showing the only representation available, that satisfies different properties from the classical logic xor operator, which is also consistent with the semantics of parity constraints from xorro.
期刊介绍:
ENTCS is a venue for the rapid electronic publication of the proceedings of conferences, of lecture notes, monographs and other similar material for which quick publication and the availability on the electronic media is appropriate. Organizers of conferences whose proceedings appear in ENTCS, and authors of other material appearing as a volume in the series are allowed to make hard copies of the relevant volume for limited distribution. For example, conference proceedings may be distributed to participants at the meeting, and lecture notes can be distributed to those taking a course based on the material in the volume.