自动分词在多语言多脚本印度文件

U. Pal, B. B. Chaudhuri
{"title":"自动分词在多语言多脚本印度文件","authors":"U. Pal, B. B. Chaudhuri","doi":"10.1109/ICDAR.1997.620567","DOIUrl":null,"url":null,"abstract":"In a multi-lingual country like India, a document may contain more than one script forms. For such a document it is necessary to separate different script forms before feeding them to OCRs of individual script. In this paper an automatic word segmentation approach is described which can separate Roman, Bangla and Devnagari scripts present in a single document. The approach has a tree structure where at first Roman script words are separated using the 'headline' feature. The headline is common in Bangla and Devnagari but absent in Roman. Next, Bangla and Devnagari words are separated using some finer characteristics of the character set although recognition of individual character is avoided. At present, the system has an overall accuracy of 96.09%.","PeriodicalId":435320,"journal":{"name":"Proceedings of the Fourth International Conference on Document Analysis and Recognition","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"Automatic separation of words in multi-lingual multi-script Indian documents\",\"authors\":\"U. Pal, B. B. Chaudhuri\",\"doi\":\"10.1109/ICDAR.1997.620567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a multi-lingual country like India, a document may contain more than one script forms. For such a document it is necessary to separate different script forms before feeding them to OCRs of individual script. In this paper an automatic word segmentation approach is described which can separate Roman, Bangla and Devnagari scripts present in a single document. The approach has a tree structure where at first Roman script words are separated using the 'headline' feature. The headline is common in Bangla and Devnagari but absent in Roman. Next, Bangla and Devnagari words are separated using some finer characteristics of the character set although recognition of individual character is avoided. At present, the system has an overall accuracy of 96.09%.\",\"PeriodicalId\":435320,\"journal\":{\"name\":\"Proceedings of the Fourth International Conference on Document Analysis and Recognition\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fourth International Conference on Document Analysis and Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.1997.620567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.1997.620567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

摘要

在像印度这样的多语言国家,一个文档可能包含不止一种脚本形式。对于这样的文档,有必要在将不同的脚本表单提供给单个脚本的ocr之前分离它们。本文描述了一种自动分词方法,该方法可以将单个文档中的罗马语、孟加拉语和德文加里语三种文字分离出来。该方法有一个树状结构,首先罗马文字使用“标题”特征分开。这个标题在孟加拉语和德文加里语中很常见,但在罗马语中却没有。接下来,使用字符集的一些更精细的特征将孟加拉语和德文加里语分开,尽管避免了对单个字符的识别。目前,该系统的总体准确率为96.09%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic separation of words in multi-lingual multi-script Indian documents
In a multi-lingual country like India, a document may contain more than one script forms. For such a document it is necessary to separate different script forms before feeding them to OCRs of individual script. In this paper an automatic word segmentation approach is described which can separate Roman, Bangla and Devnagari scripts present in a single document. The approach has a tree structure where at first Roman script words are separated using the 'headline' feature. The headline is common in Bangla and Devnagari but absent in Roman. Next, Bangla and Devnagari words are separated using some finer characteristics of the character set although recognition of individual character is avoided. At present, the system has an overall accuracy of 96.09%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Document layout analysis based on emergent computation Offline handwritten Chinese character recognition via radical extraction and recognition Boundary normalization for recognition of non-touching non-degraded characters Words recognition using associative memory Image and text coupling for creating electronic books from manuscripts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1