{"title":"自动分词在多语言多脚本印度文件","authors":"U. Pal, B. B. Chaudhuri","doi":"10.1109/ICDAR.1997.620567","DOIUrl":null,"url":null,"abstract":"In a multi-lingual country like India, a document may contain more than one script forms. For such a document it is necessary to separate different script forms before feeding them to OCRs of individual script. In this paper an automatic word segmentation approach is described which can separate Roman, Bangla and Devnagari scripts present in a single document. The approach has a tree structure where at first Roman script words are separated using the 'headline' feature. The headline is common in Bangla and Devnagari but absent in Roman. Next, Bangla and Devnagari words are separated using some finer characteristics of the character set although recognition of individual character is avoided. At present, the system has an overall accuracy of 96.09%.","PeriodicalId":435320,"journal":{"name":"Proceedings of the Fourth International Conference on Document Analysis and Recognition","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"Automatic separation of words in multi-lingual multi-script Indian documents\",\"authors\":\"U. Pal, B. B. Chaudhuri\",\"doi\":\"10.1109/ICDAR.1997.620567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a multi-lingual country like India, a document may contain more than one script forms. For such a document it is necessary to separate different script forms before feeding them to OCRs of individual script. In this paper an automatic word segmentation approach is described which can separate Roman, Bangla and Devnagari scripts present in a single document. The approach has a tree structure where at first Roman script words are separated using the 'headline' feature. The headline is common in Bangla and Devnagari but absent in Roman. Next, Bangla and Devnagari words are separated using some finer characteristics of the character set although recognition of individual character is avoided. At present, the system has an overall accuracy of 96.09%.\",\"PeriodicalId\":435320,\"journal\":{\"name\":\"Proceedings of the Fourth International Conference on Document Analysis and Recognition\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fourth International Conference on Document Analysis and Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.1997.620567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.1997.620567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic separation of words in multi-lingual multi-script Indian documents
In a multi-lingual country like India, a document may contain more than one script forms. For such a document it is necessary to separate different script forms before feeding them to OCRs of individual script. In this paper an automatic word segmentation approach is described which can separate Roman, Bangla and Devnagari scripts present in a single document. The approach has a tree structure where at first Roman script words are separated using the 'headline' feature. The headline is common in Bangla and Devnagari but absent in Roman. Next, Bangla and Devnagari words are separated using some finer characteristics of the character set although recognition of individual character is avoided. At present, the system has an overall accuracy of 96.09%.