GPGPU加速使用OpenCL的聚光灯SAR模拟器

E. Balster, M. Hoffman, J. P. Skeans, David Fan
{"title":"GPGPU加速使用OpenCL的聚光灯SAR模拟器","authors":"E. Balster, M. Hoffman, J. P. Skeans, David Fan","doi":"10.1145/3078155.3078157","DOIUrl":null,"url":null,"abstract":"In this paper, OpenCL is used to target a general purpose graphics processing unit (GPGPU) for acceleration of 2 modules used in a synthetic aperture radar (SAR) simulator. Two of the most computationally complex modules, the Back Projection and Generate Return modules, are targeted to an AMD FirePro M5100 GPGPU. The resulting speedup is 3X over multi-threaded C++ implementations of those algorithms running on an 4-core Intel I7 2.8GHz processor, 4X and 7X over single-threaded C++ implementations, and 19X and 29X over native MATLAB implementations, respectively.","PeriodicalId":267581,"journal":{"name":"Proceedings of the 5th International Workshop on OpenCL","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"GPGPU Acceleration using OpenCL for a Spotlight SAR Simulator\",\"authors\":\"E. Balster, M. Hoffman, J. P. Skeans, David Fan\",\"doi\":\"10.1145/3078155.3078157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, OpenCL is used to target a general purpose graphics processing unit (GPGPU) for acceleration of 2 modules used in a synthetic aperture radar (SAR) simulator. Two of the most computationally complex modules, the Back Projection and Generate Return modules, are targeted to an AMD FirePro M5100 GPGPU. The resulting speedup is 3X over multi-threaded C++ implementations of those algorithms running on an 4-core Intel I7 2.8GHz processor, 4X and 7X over single-threaded C++ implementations, and 19X and 29X over native MATLAB implementations, respectively.\",\"PeriodicalId\":267581,\"journal\":{\"name\":\"Proceedings of the 5th International Workshop on OpenCL\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th International Workshop on OpenCL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3078155.3078157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Workshop on OpenCL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078155.3078157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文以OpenCL为目标,针对合成孔径雷达(SAR)模拟器中2个模块的加速,设计了通用图形处理单元(GPGPU)。两个计算最复杂的模块,Back Projection和Generate Return模块,是针对AMD FirePro M5100 GPGPU的。这些算法在4核Intel I7 2.8GHz处理器上的多线程c++实现的速度提高了3倍,比单线程c++实现的速度提高了4倍和7倍,比原生MATLAB实现的速度提高了19倍和29倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GPGPU Acceleration using OpenCL for a Spotlight SAR Simulator
In this paper, OpenCL is used to target a general purpose graphics processing unit (GPGPU) for acceleration of 2 modules used in a synthetic aperture radar (SAR) simulator. Two of the most computationally complex modules, the Back Projection and Generate Return modules, are targeted to an AMD FirePro M5100 GPGPU. The resulting speedup is 3X over multi-threaded C++ implementations of those algorithms running on an 4-core Intel I7 2.8GHz processor, 4X and 7X over single-threaded C++ implementations, and 19X and 29X over native MATLAB implementations, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wavefront Parallel Processing on GPUs with an Application to Video Encoding Algorithms Modeling Explicit SIMD Programming With Subgroup Functions OpenCL Interoperability with OpenVX Graphs Challenges and Opportunities in Native GPU Debugging OpenCL in Scientific High Performance Computing: The Good, the Bad, and the Ugly
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1