短期风电预测机器学习估计器的随机启发式优化

Athanasios Ioannis Arvanitidis, Dimitrios Kontogiannis, Georgios Vontzos, Vasileios Laitsos, D. Bargiotas
{"title":"短期风电预测机器学习估计器的随机启发式优化","authors":"Athanasios Ioannis Arvanitidis, Dimitrios Kontogiannis, Georgios Vontzos, Vasileios Laitsos, D. Bargiotas","doi":"10.1109/UPEC55022.2022.9917957","DOIUrl":null,"url":null,"abstract":"The continuous fluctuation of wind speed, wind direction and other climatic variables affects the power produced by wind turbines. Accurate short-term wind power prediction models are vital for the power industry to evaluate future energy extraction, increase wind energy penetration and develop cost-effective operations. This research examines short-term wind power forecasting and investigates the effect of sharp, smooth and slow temperature reduction functions on the Simulated Annealing (SA) optimization technique for several prominent prediction models. The regressors under investigation include a Support Vector Machine, a Multi-Layer Perceptron and a Long-Short Term Memory neural network. Their optimization is based on the SA, which is used to specify the hyperparameters of each model in order to enhance the prediction accuracy. The results for each model based on the data of the Greek island of Skyros denote the superiority of the slow temperature reduction function in terms of error metrics and observe that the optimized Multi-Layer Perceptron is the most suitable model for this forecasting task when slow temperature reduction is implemented.","PeriodicalId":371561,"journal":{"name":"2022 57th International Universities Power Engineering Conference (UPEC)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic Heuristic Optimization of Machine Learning Estimators for Short-Term Wind Power Forecasting\",\"authors\":\"Athanasios Ioannis Arvanitidis, Dimitrios Kontogiannis, Georgios Vontzos, Vasileios Laitsos, D. Bargiotas\",\"doi\":\"10.1109/UPEC55022.2022.9917957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The continuous fluctuation of wind speed, wind direction and other climatic variables affects the power produced by wind turbines. Accurate short-term wind power prediction models are vital for the power industry to evaluate future energy extraction, increase wind energy penetration and develop cost-effective operations. This research examines short-term wind power forecasting and investigates the effect of sharp, smooth and slow temperature reduction functions on the Simulated Annealing (SA) optimization technique for several prominent prediction models. The regressors under investigation include a Support Vector Machine, a Multi-Layer Perceptron and a Long-Short Term Memory neural network. Their optimization is based on the SA, which is used to specify the hyperparameters of each model in order to enhance the prediction accuracy. The results for each model based on the data of the Greek island of Skyros denote the superiority of the slow temperature reduction function in terms of error metrics and observe that the optimized Multi-Layer Perceptron is the most suitable model for this forecasting task when slow temperature reduction is implemented.\",\"PeriodicalId\":371561,\"journal\":{\"name\":\"2022 57th International Universities Power Engineering Conference (UPEC)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 57th International Universities Power Engineering Conference (UPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UPEC55022.2022.9917957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 57th International Universities Power Engineering Conference (UPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC55022.2022.9917957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

风速、风向和其他气候变量的持续波动影响着风力发电机产生的功率。准确的短期风电预测模型对于电力行业评估未来能源开采、增加风能渗透率和开发具有成本效益的运营至关重要。本研究以短期风力发电预测为研究对象,探讨了尖锐、平滑和缓慢温度降低函数对几种主要预测模型的模拟退火优化技术的影响。正在研究的回归器包括支持向量机,多层感知器和长短期记忆神经网络。他们的优化是基于SA的,该SA用于指定每个模型的超参数,以提高预测精度。基于希腊Skyros岛数据的每个模型的结果表明,慢降温函数在误差度量方面具有优越性,并观察到优化后的多层感知器是实现慢降温时最适合该预测任务的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stochastic Heuristic Optimization of Machine Learning Estimators for Short-Term Wind Power Forecasting
The continuous fluctuation of wind speed, wind direction and other climatic variables affects the power produced by wind turbines. Accurate short-term wind power prediction models are vital for the power industry to evaluate future energy extraction, increase wind energy penetration and develop cost-effective operations. This research examines short-term wind power forecasting and investigates the effect of sharp, smooth and slow temperature reduction functions on the Simulated Annealing (SA) optimization technique for several prominent prediction models. The regressors under investigation include a Support Vector Machine, a Multi-Layer Perceptron and a Long-Short Term Memory neural network. Their optimization is based on the SA, which is used to specify the hyperparameters of each model in order to enhance the prediction accuracy. The results for each model based on the data of the Greek island of Skyros denote the superiority of the slow temperature reduction function in terms of error metrics and observe that the optimized Multi-Layer Perceptron is the most suitable model for this forecasting task when slow temperature reduction is implemented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Evaluation of Extending an Existing Substation Automation System using IEC 61850 Time Characteristic Curve Based Earth Fault Relay Selectivity Assessment for Optimal Overcurrent Relay Coordination in Distribution Networks Impact of the Photovoltaic Array Configuration on its Performance under Partial Shading Conditions The Impacts of The Temperature-Humidity Fluctuations in Substations and Practical Experimental Applications Synthesis and Characterization of Multi-level Pseudo-Random Sequences as Excitation Signals for System Identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1