均值移位结合粒子滤波算法在FLIR图像中的鲁棒跟踪

Wei Yang, Shuangyan Hu, Jun-shan Li, Deqin Shi
{"title":"均值移位结合粒子滤波算法在FLIR图像中的鲁棒跟踪","authors":"Wei Yang, Shuangyan Hu, Jun-shan Li, Deqin Shi","doi":"10.1109/KAMW.2008.4810602","DOIUrl":null,"url":null,"abstract":"A novel target tracking algorithm for forward-looking infrared image sequences is proposed based on mean shift and particle filter algorithm. The mean shift algorithm is served as an efficient gradient estimation and mode seeking procedure in the particle filter. Particles move toward the modes of the posterior kernel density estimation. The infrared target is represented in the cascade grey space and the state transition model is established as the second-order auto-regressive model. We use the modified particle filter to track the infrared target robustly. Experiment results show that the proposed tracking algorithm is efficient and robust for the infrared targets with severe clutter background and provide better tracking performance than the conventional particle filter.","PeriodicalId":375613,"journal":{"name":"2008 IEEE International Symposium on Knowledge Acquisition and Modeling Workshop","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust Tracking in FLIR Imagery by Mean Shift Combined with Particle Filter Algorithm\",\"authors\":\"Wei Yang, Shuangyan Hu, Jun-shan Li, Deqin Shi\",\"doi\":\"10.1109/KAMW.2008.4810602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel target tracking algorithm for forward-looking infrared image sequences is proposed based on mean shift and particle filter algorithm. The mean shift algorithm is served as an efficient gradient estimation and mode seeking procedure in the particle filter. Particles move toward the modes of the posterior kernel density estimation. The infrared target is represented in the cascade grey space and the state transition model is established as the second-order auto-regressive model. We use the modified particle filter to track the infrared target robustly. Experiment results show that the proposed tracking algorithm is efficient and robust for the infrared targets with severe clutter background and provide better tracking performance than the conventional particle filter.\",\"PeriodicalId\":375613,\"journal\":{\"name\":\"2008 IEEE International Symposium on Knowledge Acquisition and Modeling Workshop\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Symposium on Knowledge Acquisition and Modeling Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KAMW.2008.4810602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Knowledge Acquisition and Modeling Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KAMW.2008.4810602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于均值移位和粒子滤波的前视红外图像序列目标跟踪算法。在粒子滤波中,均值移位算法是一种有效的梯度估计和寻模方法。粒子向后验核密度估计的模态移动。将红外目标用级联灰空间表示,将状态转移模型建立为二阶自回归模型。采用改进的粒子滤波方法对红外目标进行鲁棒跟踪。实验结果表明,该算法对严重杂波背景下的红外目标具有较强的鲁棒性,具有较好的跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust Tracking in FLIR Imagery by Mean Shift Combined with Particle Filter Algorithm
A novel target tracking algorithm for forward-looking infrared image sequences is proposed based on mean shift and particle filter algorithm. The mean shift algorithm is served as an efficient gradient estimation and mode seeking procedure in the particle filter. Particles move toward the modes of the posterior kernel density estimation. The infrared target is represented in the cascade grey space and the state transition model is established as the second-order auto-regressive model. We use the modified particle filter to track the infrared target robustly. Experiment results show that the proposed tracking algorithm is efficient and robust for the infrared targets with severe clutter background and provide better tracking performance than the conventional particle filter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Current Status, Causes and Intervention Strategies of Soccer Violence in Chinese Professional Football League Simulation of Forest Fire Extinguishing with Pneumatic Extinguisher Based on Multi-Agent Summarization Based on Event-cluster An Algorithm of Mean Quantification Digital Watermarking based on Lifting Wavelet Coefficients Research of Knowledge Acquisition and Modeling Method Based on Patent Map
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1