基于功能流仿真的蛋白质相互作用网络分析

Lei Shi, Young-Rae Cho, A. Zhang
{"title":"基于功能流仿真的蛋白质相互作用网络分析","authors":"Lei Shi, Young-Rae Cho, A. Zhang","doi":"10.1109/BIBE.2010.32","DOIUrl":null,"url":null,"abstract":"Protein-protein interactions (PPIs) play fundamental roles in nearly all biological processes and differ based on the composition, affinity and lifetime of the association. A vast amount of PPI data for various organisms is avaiable from MIPS, DIP and other sources. The identification of functional modules in PPI network is of great interest because they often reveal unknown functional ties between proteins and hence predict functions for unknown proteins. In this paper, we propose using functional flow simulation and the topology of the network for the functional module detection and function prediction problem. Our approach is based on the functional influence model that quantifies the influence of a biological component on another. We introduce a flow simulation algorithm to generate a functional profile for each component. In addition, a new clustering method FMD (Functional Module Detection) is designed to associate with functional profiles to detect functional modules. We evaluate the proposed technique on three different yeast networks with MIPS functional categories and compare it with several other existing techniques in terms of precision and recall. Our experiments show that our approach achieves better accuracy than other existing methods.","PeriodicalId":330904,"journal":{"name":"2010 IEEE International Conference on BioInformatics and BioEngineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Functional Flow Simulation Based Analysis of Protein Interaction Network\",\"authors\":\"Lei Shi, Young-Rae Cho, A. Zhang\",\"doi\":\"10.1109/BIBE.2010.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Protein-protein interactions (PPIs) play fundamental roles in nearly all biological processes and differ based on the composition, affinity and lifetime of the association. A vast amount of PPI data for various organisms is avaiable from MIPS, DIP and other sources. The identification of functional modules in PPI network is of great interest because they often reveal unknown functional ties between proteins and hence predict functions for unknown proteins. In this paper, we propose using functional flow simulation and the topology of the network for the functional module detection and function prediction problem. Our approach is based on the functional influence model that quantifies the influence of a biological component on another. We introduce a flow simulation algorithm to generate a functional profile for each component. In addition, a new clustering method FMD (Functional Module Detection) is designed to associate with functional profiles to detect functional modules. We evaluate the proposed technique on three different yeast networks with MIPS functional categories and compare it with several other existing techniques in terms of precision and recall. Our experiments show that our approach achieves better accuracy than other existing methods.\",\"PeriodicalId\":330904,\"journal\":{\"name\":\"2010 IEEE International Conference on BioInformatics and BioEngineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on BioInformatics and BioEngineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2010.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on BioInformatics and BioEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2010.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

蛋白质-蛋白质相互作用(PPIs)在几乎所有的生物过程中发挥着重要作用,并根据其组成、亲和力和结合寿命而有所不同。从MIPS、DIP和其他来源可获得各种生物体的大量PPI数据。PPI网络中功能模块的鉴定具有重要意义,因为它们经常揭示蛋白质之间未知的功能联系,从而预测未知蛋白质的功能。在本文中,我们提出使用功能流仿真和网络拓扑来解决功能模块检测和功能预测问题。我们的方法基于功能影响模型,该模型量化了一种生物成分对另一种生物成分的影响。我们介绍了一个流程模拟算法来生成每个组件的功能轮廓。此外,设计了一种新的聚类方法FMD (Functional Module Detection,功能模块检测),结合功能概况对功能模块进行检测。我们在具有MIPS功能类别的三种不同酵母网络上评估了所提出的技术,并将其与其他几种现有技术在精度和召回率方面进行了比较。实验表明,该方法比现有方法具有更好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Functional Flow Simulation Based Analysis of Protein Interaction Network
Protein-protein interactions (PPIs) play fundamental roles in nearly all biological processes and differ based on the composition, affinity and lifetime of the association. A vast amount of PPI data for various organisms is avaiable from MIPS, DIP and other sources. The identification of functional modules in PPI network is of great interest because they often reveal unknown functional ties between proteins and hence predict functions for unknown proteins. In this paper, we propose using functional flow simulation and the topology of the network for the functional module detection and function prediction problem. Our approach is based on the functional influence model that quantifies the influence of a biological component on another. We introduce a flow simulation algorithm to generate a functional profile for each component. In addition, a new clustering method FMD (Functional Module Detection) is designed to associate with functional profiles to detect functional modules. We evaluate the proposed technique on three different yeast networks with MIPS functional categories and compare it with several other existing techniques in terms of precision and recall. Our experiments show that our approach achieves better accuracy than other existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessment of the Binding Characteristics of Human Immunodeficiency Virus Type 1 Glycoprotein120 and Host Cluster of Differentiation4 Using Digital Signal Processing Detection of Mild Cognitive Impairment Using Image Differences and Clinical Features Quantification and Analysis of Combination Drug Synergy in High-Throughput Transcriptome Studies Gene Set Analysis with Covariates A Comparative Study of a Novel AE-nLMS Filter and Two Traditional Filters in Predicting Respiration Induced Motion of the Tumor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1