Alessandra Fais, G. Antichi, S. Giordano, G. Lettieri, G. Procissi
{"title":"注意遥测数据分析的成本","authors":"Alessandra Fais, G. Antichi, S. Giordano, G. Lettieri, G. Procissi","doi":"10.1145/3546037.3546052","DOIUrl":null,"url":null,"abstract":"Data Stream Processing engines are emerging as a promising solution to efficiently process a continuous amount of telemetry information. In this poster, we compare four of them: Storm, Flink, Spark and WindFlow. The aim is to shed some lights on the best streaming engine for network traffic analysis.","PeriodicalId":351682,"journal":{"name":"Proceedings of the SIGCOMM '22 Poster and Demo Sessions","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mind the cost of telemetry data analysis\",\"authors\":\"Alessandra Fais, G. Antichi, S. Giordano, G. Lettieri, G. Procissi\",\"doi\":\"10.1145/3546037.3546052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data Stream Processing engines are emerging as a promising solution to efficiently process a continuous amount of telemetry information. In this poster, we compare four of them: Storm, Flink, Spark and WindFlow. The aim is to shed some lights on the best streaming engine for network traffic analysis.\",\"PeriodicalId\":351682,\"journal\":{\"name\":\"Proceedings of the SIGCOMM '22 Poster and Demo Sessions\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the SIGCOMM '22 Poster and Demo Sessions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3546037.3546052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIGCOMM '22 Poster and Demo Sessions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3546037.3546052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data Stream Processing engines are emerging as a promising solution to efficiently process a continuous amount of telemetry information. In this poster, we compare four of them: Storm, Flink, Spark and WindFlow. The aim is to shed some lights on the best streaming engine for network traffic analysis.