注意遥测数据分析的成本

Alessandra Fais, G. Antichi, S. Giordano, G. Lettieri, G. Procissi
{"title":"注意遥测数据分析的成本","authors":"Alessandra Fais, G. Antichi, S. Giordano, G. Lettieri, G. Procissi","doi":"10.1145/3546037.3546052","DOIUrl":null,"url":null,"abstract":"Data Stream Processing engines are emerging as a promising solution to efficiently process a continuous amount of telemetry information. In this poster, we compare four of them: Storm, Flink, Spark and WindFlow. The aim is to shed some lights on the best streaming engine for network traffic analysis.","PeriodicalId":351682,"journal":{"name":"Proceedings of the SIGCOMM '22 Poster and Demo Sessions","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mind the cost of telemetry data analysis\",\"authors\":\"Alessandra Fais, G. Antichi, S. Giordano, G. Lettieri, G. Procissi\",\"doi\":\"10.1145/3546037.3546052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data Stream Processing engines are emerging as a promising solution to efficiently process a continuous amount of telemetry information. In this poster, we compare four of them: Storm, Flink, Spark and WindFlow. The aim is to shed some lights on the best streaming engine for network traffic analysis.\",\"PeriodicalId\":351682,\"journal\":{\"name\":\"Proceedings of the SIGCOMM '22 Poster and Demo Sessions\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the SIGCOMM '22 Poster and Demo Sessions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3546037.3546052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIGCOMM '22 Poster and Demo Sessions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3546037.3546052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

数据流处理引擎作为有效处理连续遥测信息的一种有前途的解决方案而出现。在这张海报中,我们比较了其中的四个:Storm, Flink, Spark和WindFlow。目的是为网络流量分析提供最好的流媒体引擎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mind the cost of telemetry data analysis
Data Stream Processing engines are emerging as a promising solution to efficiently process a continuous amount of telemetry information. In this poster, we compare four of them: Storm, Flink, Spark and WindFlow. The aim is to shed some lights on the best streaming engine for network traffic analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Oakestra Enabling IoT self-localization using ambient 5G mmWave signals RoMA: rotating MAC address for privacy protection Accelerating kubernetes with in-network caching TCP-INT: lightweight network telemetry with TCP transport
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1