基于SVM和Meanshift跟踪算法的运动目标跟踪方法

Fan Zhang
{"title":"基于SVM和Meanshift跟踪算法的运动目标跟踪方法","authors":"Fan Zhang","doi":"10.1145/3556677.3556701","DOIUrl":null,"url":null,"abstract":"In this paper, a video moving object tracking method based on SVM and Meanshift tracking algorithm is proposed. The location of the tracking object is selected in the initial image of the sports video, the feature vectors of the object and background around the tracking object is obtained, the object and background feature vectors are used to train the SVM binary classifier, and the classifier is used to classify the next video image to track the object location and the background image to obtain the confidence map. Use the Meanshift tracking algorithm to get the current tracking object center position within the confidence map range, move the center position of the object frame and background frame to reach the object position, zoom the object frame at a 10% scale, and select the best one to adapt to the change of object size. Determines if the last frame of the video has been tracked, and if not, train a new SVM classifier using the object and background pixels at this time to track the next frame of the video until the entire video sequence image moving object tracking task is completed. The experimental results show that the proposed method can track the moving objects in the video real-time and accurately.","PeriodicalId":350340,"journal":{"name":"Proceedings of the 2022 6th International Conference on Deep Learning Technologies","volume":" 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moving Object Tracking Method Based on SVM and Meanshift Tracking Algorithm\",\"authors\":\"Fan Zhang\",\"doi\":\"10.1145/3556677.3556701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a video moving object tracking method based on SVM and Meanshift tracking algorithm is proposed. The location of the tracking object is selected in the initial image of the sports video, the feature vectors of the object and background around the tracking object is obtained, the object and background feature vectors are used to train the SVM binary classifier, and the classifier is used to classify the next video image to track the object location and the background image to obtain the confidence map. Use the Meanshift tracking algorithm to get the current tracking object center position within the confidence map range, move the center position of the object frame and background frame to reach the object position, zoom the object frame at a 10% scale, and select the best one to adapt to the change of object size. Determines if the last frame of the video has been tracked, and if not, train a new SVM classifier using the object and background pixels at this time to track the next frame of the video until the entire video sequence image moving object tracking task is completed. The experimental results show that the proposed method can track the moving objects in the video real-time and accurately.\",\"PeriodicalId\":350340,\"journal\":{\"name\":\"Proceedings of the 2022 6th International Conference on Deep Learning Technologies\",\"volume\":\" 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 6th International Conference on Deep Learning Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3556677.3556701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 6th International Conference on Deep Learning Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3556677.3556701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于支持向量机和Meanshift跟踪算法的视频运动目标跟踪方法。在体育视频的初始图像中选择跟踪对象的位置,获得跟踪对象周围的对象和背景的特征向量,用对象和背景特征向量训练SVM二值分类器,用分类器对下一个视频图像进行分类,跟踪目标位置和背景图像,得到置信度图。使用Meanshift跟踪算法在置信度地图范围内获取当前跟踪目标的中心位置,移动目标帧和背景帧的中心位置到达目标位置,以10%的比例缩放目标帧,并选择最佳的一个来适应目标大小的变化。判断视频的最后一帧是否被跟踪,如果没有,则使用此时的目标和背景像素训练新的SVM分类器来跟踪视频的下一帧,直到整个视频序列图像移动目标跟踪任务完成。实验结果表明,该方法能够实时、准确地跟踪视频中的运动目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Moving Object Tracking Method Based on SVM and Meanshift Tracking Algorithm
In this paper, a video moving object tracking method based on SVM and Meanshift tracking algorithm is proposed. The location of the tracking object is selected in the initial image of the sports video, the feature vectors of the object and background around the tracking object is obtained, the object and background feature vectors are used to train the SVM binary classifier, and the classifier is used to classify the next video image to track the object location and the background image to obtain the confidence map. Use the Meanshift tracking algorithm to get the current tracking object center position within the confidence map range, move the center position of the object frame and background frame to reach the object position, zoom the object frame at a 10% scale, and select the best one to adapt to the change of object size. Determines if the last frame of the video has been tracked, and if not, train a new SVM classifier using the object and background pixels at this time to track the next frame of the video until the entire video sequence image moving object tracking task is completed. The experimental results show that the proposed method can track the moving objects in the video real-time and accurately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Fake News on Social Media by CSIBERT Automated Recognition of Oracle Bone Inscriptions Using Deep Learning and Data Augmentation Weather Recognition Based on Still Images Using Deep Learning Neural Network with Resnet-15 Ultrasonic scanning image defect detection of plastic packaging components based on FCOS Household Load Identification Based on Multi-label and Convolutional Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1