从文本中学习概念、分类和非分类关系

M. Shamsfard
{"title":"从文本中学习概念、分类和非分类关系","authors":"M. Shamsfard","doi":"10.1109/IS.2006.348404","DOIUrl":null,"url":null,"abstract":"This paper discusses the knowledge extraction process in an ontology learning system called Hasti. It exploits an automatic, hybrid, symbolic approach to acquire conceptual knowledge and construct flexible and dynamic ontologies from scratch. This approach starts from a small kernel and learns concepts, taxonomic and non-taxonomic relations and axioms from natural language texts. The focus of this paper is on extraction of concepts and conceptual (taxonomic and non-taxonomic) relations using linguistic and template-driven methods. In this paper, the author will first present a brief overview on ontology learning systems and then describing the life cycle for the ontology learning and building process in Haiti, the knowledge extraction process will be discussed in more details. At last the author will present some experimental results of implementation and testing the proposed model","PeriodicalId":116809,"journal":{"name":"2006 3rd International IEEE Conference Intelligent Systems","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Learning Concepts, Taxonomic and Nontaxonomic Relations from texts\",\"authors\":\"M. Shamsfard\",\"doi\":\"10.1109/IS.2006.348404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the knowledge extraction process in an ontology learning system called Hasti. It exploits an automatic, hybrid, symbolic approach to acquire conceptual knowledge and construct flexible and dynamic ontologies from scratch. This approach starts from a small kernel and learns concepts, taxonomic and non-taxonomic relations and axioms from natural language texts. The focus of this paper is on extraction of concepts and conceptual (taxonomic and non-taxonomic) relations using linguistic and template-driven methods. In this paper, the author will first present a brief overview on ontology learning systems and then describing the life cycle for the ontology learning and building process in Haiti, the knowledge extraction process will be discussed in more details. At last the author will present some experimental results of implementation and testing the proposed model\",\"PeriodicalId\":116809,\"journal\":{\"name\":\"2006 3rd International IEEE Conference Intelligent Systems\",\"volume\":\"189 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 3rd International IEEE Conference Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IS.2006.348404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 3rd International IEEE Conference Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IS.2006.348404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文讨论了本体学习系统Hasti中的知识抽取过程。它利用一种自动的、混合的、符号的方法来获取概念性知识,从零开始构建灵活的、动态的本体。该方法从一个小内核开始,从自然语言文本中学习概念、分类和非分类关系以及公理。本文的重点是使用语言和模板驱动的方法提取概念和概念(分类学和非分类学)关系。在本文中,作者将首先简要介绍本体学习系统,然后描述海地本体学习的生命周期和构建过程,并详细讨论知识提取过程。最后,作者将给出一些实现和测试所提出模型的实验结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning Concepts, Taxonomic and Nontaxonomic Relations from texts
This paper discusses the knowledge extraction process in an ontology learning system called Hasti. It exploits an automatic, hybrid, symbolic approach to acquire conceptual knowledge and construct flexible and dynamic ontologies from scratch. This approach starts from a small kernel and learns concepts, taxonomic and non-taxonomic relations and axioms from natural language texts. The focus of this paper is on extraction of concepts and conceptual (taxonomic and non-taxonomic) relations using linguistic and template-driven methods. In this paper, the author will first present a brief overview on ontology learning systems and then describing the life cycle for the ontology learning and building process in Haiti, the knowledge extraction process will be discussed in more details. At last the author will present some experimental results of implementation and testing the proposed model
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Neurofuzzy Adaptive Kalman Filter Artificial Intelligence Technique for Gene Expression Profiling of Urinary Bladder Cancer Evolutionary Support Vector Machines for Diabetes Mellitus Diagnosis IGUANA: Individuation of Global Unsafe ANomalies and Alarm activation Smart Data Analysis Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1