基于分割的目标检测综合分析

P. Nikkam, N. Hegde, Eswar Reddy
{"title":"基于分割的目标检测综合分析","authors":"P. Nikkam, N. Hegde, Eswar Reddy","doi":"10.1109/ICSIP.2014.32","DOIUrl":null,"url":null,"abstract":"In computer vision extracting an object from an image automatically is too hard. Towards addressing this issue a comprehensive analysis of most of the Object detection through different Segmentations is performed taken from the major recent publications covering various aspects of the research in this area. We identify the following methods of the state-of-the-art techniques in which an object can be detected: (1) Mean Shift Segmentation With Region Merging, (2) Boundary Structure Segmentation With Region Grouping, (3) Watershed Segmentation With Region Merging. All these are semi automatic detection of an object through segmentation and contour based shape descriptor. The results tabulated prove that the Mean Shift Segmentation with Region Merging Process yields the best result over the other two methods in detection the Object Of Interest.","PeriodicalId":111591,"journal":{"name":"2014 Fifth International Conference on Signal and Image Processing","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comprehensive Analysis of Object Detection through Segmentation\",\"authors\":\"P. Nikkam, N. Hegde, Eswar Reddy\",\"doi\":\"10.1109/ICSIP.2014.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In computer vision extracting an object from an image automatically is too hard. Towards addressing this issue a comprehensive analysis of most of the Object detection through different Segmentations is performed taken from the major recent publications covering various aspects of the research in this area. We identify the following methods of the state-of-the-art techniques in which an object can be detected: (1) Mean Shift Segmentation With Region Merging, (2) Boundary Structure Segmentation With Region Grouping, (3) Watershed Segmentation With Region Merging. All these are semi automatic detection of an object through segmentation and contour based shape descriptor. The results tabulated prove that the Mean Shift Segmentation with Region Merging Process yields the best result over the other two methods in detection the Object Of Interest.\",\"PeriodicalId\":111591,\"journal\":{\"name\":\"2014 Fifth International Conference on Signal and Image Processing\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Fifth International Conference on Signal and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIP.2014.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Fifth International Conference on Signal and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIP.2014.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在计算机视觉中,从图像中自动提取物体是非常困难的。为了解决这一问题,本文从涵盖该领域研究各个方面的最新主要出版物中,对大多数通过不同分割的目标检测进行了全面分析。我们确定了以下几种最先进的目标检测方法:(1)带区域合并的均值偏移分割,(2)带区域分组的边界结构分割,(3)带区域合并的分水岭分割。这些都是通过分割和基于轮廓的形状描述符对目标进行半自动检测。结果表明,与其他两种方法相比,结合区域合并的均值移位分割方法在检测感兴趣目标方面效果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comprehensive Analysis of Object Detection through Segmentation
In computer vision extracting an object from an image automatically is too hard. Towards addressing this issue a comprehensive analysis of most of the Object detection through different Segmentations is performed taken from the major recent publications covering various aspects of the research in this area. We identify the following methods of the state-of-the-art techniques in which an object can be detected: (1) Mean Shift Segmentation With Region Merging, (2) Boundary Structure Segmentation With Region Grouping, (3) Watershed Segmentation With Region Merging. All these are semi automatic detection of an object through segmentation and contour based shape descriptor. The results tabulated prove that the Mean Shift Segmentation with Region Merging Process yields the best result over the other two methods in detection the Object Of Interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rule Line Detection and Removal in Handwritten Text Images Features Based IUGR Diagnosis Using Variational Level Set Method and Classification Using Artificial Neural Networks Design of a Low Error Fixed-Width Radix-8 Booth Multiplier Content Based Image Retrieval with Relevance Feedback Using Riemannian Manifolds Wavelet Based Signal Processing Technique for Classification of Power Quality Disturbances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1