PPRLM语言识别系统中后端分类器的设计

Hongbin Suo, Ming Li, Tantan Liu, Ping Lu, Yonghong Yan
{"title":"PPRLM语言识别系统中后端分类器的设计","authors":"Hongbin Suo, Ming Li, Tantan Liu, Ping Lu, Yonghong Yan","doi":"10.1109/ICNC.2007.719","DOIUrl":null,"url":null,"abstract":"The design approach for classifying the backend features of the PPRLM (Parallel Phone Recognition and Language Modeling) system is demonstrated in this paper. A variety of features and their combinations extracted by language dependent recognizers were evaluated based on the National Institute of Standards and Technology (NIST) Language Recognition Evaluation (LRE) 2003 corpus. Three well-known classifiers: Gaussian Mixture Model (GMM), Support Vector Machine (SVM), and feed forward neural network (NN) are proposed to compartmentalize these high level features which are generated by n-gram language model scoring and one pass decoding based on acoustic model in PPRLM system. Finally, the log-likelihood radio (LLR) normalization is applied to backend processing to the target language scores and the performance of language recognition is enhanced.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"The Design of Backend Classifiers in PPRLM System for Language Identification\",\"authors\":\"Hongbin Suo, Ming Li, Tantan Liu, Ping Lu, Yonghong Yan\",\"doi\":\"10.1109/ICNC.2007.719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design approach for classifying the backend features of the PPRLM (Parallel Phone Recognition and Language Modeling) system is demonstrated in this paper. A variety of features and their combinations extracted by language dependent recognizers were evaluated based on the National Institute of Standards and Technology (NIST) Language Recognition Evaluation (LRE) 2003 corpus. Three well-known classifiers: Gaussian Mixture Model (GMM), Support Vector Machine (SVM), and feed forward neural network (NN) are proposed to compartmentalize these high level features which are generated by n-gram language model scoring and one pass decoding based on acoustic model in PPRLM system. Finally, the log-likelihood radio (LLR) normalization is applied to backend processing to the target language scores and the performance of language recognition is enhanced.\",\"PeriodicalId\":250881,\"journal\":{\"name\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2007.719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文阐述了手机并行识别与语言建模系统后端特征分类的设计方法。基于美国国家标准与技术研究院(NIST)语言识别评估(LRE) 2003语料库,对语言依赖识别器提取的各种特征及其组合进行了评估。提出了高斯混合模型(GMM)、支持向量机(SVM)和前馈神经网络(NN)三种常用的分类器对PPRLM系统中由n-gram语言模型评分和基于声学模型的一次解码生成的高级特征进行分类。最后,将对数似然无线电(LLR)归一化应用于目标语言分数的后端处理,提高了语言识别的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Design of Backend Classifiers in PPRLM System for Language Identification
The design approach for classifying the backend features of the PPRLM (Parallel Phone Recognition and Language Modeling) system is demonstrated in this paper. A variety of features and their combinations extracted by language dependent recognizers were evaluated based on the National Institute of Standards and Technology (NIST) Language Recognition Evaluation (LRE) 2003 corpus. Three well-known classifiers: Gaussian Mixture Model (GMM), Support Vector Machine (SVM), and feed forward neural network (NN) are proposed to compartmentalize these high level features which are generated by n-gram language model scoring and one pass decoding based on acoustic model in PPRLM system. Finally, the log-likelihood radio (LLR) normalization is applied to backend processing to the target language scores and the performance of language recognition is enhanced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emotional Evaluation of Color Patterns Based on Rough Sets Uniqueness of Linear Combinations of Ridge Functions PID Neural Network Temperature Control System in Plastic Injecting-moulding Machine The Study of Membrane Fouling Modeling Method Based on Wavelet Neural Network for Sewage Treatment Membrane Bioreactor Simulation and Research of the PCB Vias Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1