在没有化学移位赋值的情况下,利用核磁共振光谱信号模式准确预测蛋白质结构类别的方法

Hiromi Arai, N. Tochio, Tsuyoshi Kato, T. Kigawa, M. Yamamura
{"title":"在没有化学移位赋值的情况下,利用核磁共振光谱信号模式准确预测蛋白质结构类别的方法","authors":"Hiromi Arai, N. Tochio, Tsuyoshi Kato, T. Kigawa, M. Yamamura","doi":"10.1109/BIBE.2010.15","DOIUrl":null,"url":null,"abstract":"The structural class information about a protein is important to understand its biological properties. NMR is one of the most powerful tools to obtain structural information of proteins in atomic resolution. However, an analysis of protein three-dimensional structure from NMR spectra usually requires laborious chemical shift assignment. We developed a new method for predicting the protein structural class directly from the NMR spectra without any chemical shift assignment. The results show that our method outperforms the methods using current secondary structure prediction.","PeriodicalId":330904,"journal":{"name":"2010 IEEE International Conference on BioInformatics and BioEngineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Accurate Prediction Method for Protein Structural Class from Signal Patterns of NMR Spectra in the Absence of Chemical Shift Assignments\",\"authors\":\"Hiromi Arai, N. Tochio, Tsuyoshi Kato, T. Kigawa, M. Yamamura\",\"doi\":\"10.1109/BIBE.2010.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The structural class information about a protein is important to understand its biological properties. NMR is one of the most powerful tools to obtain structural information of proteins in atomic resolution. However, an analysis of protein three-dimensional structure from NMR spectra usually requires laborious chemical shift assignment. We developed a new method for predicting the protein structural class directly from the NMR spectra without any chemical shift assignment. The results show that our method outperforms the methods using current secondary structure prediction.\",\"PeriodicalId\":330904,\"journal\":{\"name\":\"2010 IEEE International Conference on BioInformatics and BioEngineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on BioInformatics and BioEngineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2010.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on BioInformatics and BioEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2010.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

蛋白质的结构类信息对了解其生物学特性非常重要。核磁共振是在原子分辨率下获取蛋白质结构信息的最有力工具之一。然而,从核磁共振光谱分析蛋白质三维结构通常需要费力的化学位移分配。我们开发了一种新的方法,可以直接从核磁共振光谱预测蛋白质的结构类别,而不需要任何化学位移分配。结果表明,该方法优于现有的二级结构预测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Accurate Prediction Method for Protein Structural Class from Signal Patterns of NMR Spectra in the Absence of Chemical Shift Assignments
The structural class information about a protein is important to understand its biological properties. NMR is one of the most powerful tools to obtain structural information of proteins in atomic resolution. However, an analysis of protein three-dimensional structure from NMR spectra usually requires laborious chemical shift assignment. We developed a new method for predicting the protein structural class directly from the NMR spectra without any chemical shift assignment. The results show that our method outperforms the methods using current secondary structure prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessment of the Binding Characteristics of Human Immunodeficiency Virus Type 1 Glycoprotein120 and Host Cluster of Differentiation4 Using Digital Signal Processing Detection of Mild Cognitive Impairment Using Image Differences and Clinical Features Quantification and Analysis of Combination Drug Synergy in High-Throughput Transcriptome Studies Gene Set Analysis with Covariates A Comparative Study of a Novel AE-nLMS Filter and Two Traditional Filters in Predicting Respiration Induced Motion of the Tumor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1