近零能耗建筑微电网多目标多准则优化

Simone Galisai, E. Ghiani, F. Pilo
{"title":"近零能耗建筑微电网多目标多准则优化","authors":"Simone Galisai, E. Ghiani, F. Pilo","doi":"10.1109/SEST.2019.8849103","DOIUrl":null,"url":null,"abstract":"Nearly zero-energy buildings (NZEBs) are high energy performance buildings in which part of the amount of energy that these buildings require comes mostly from renewable sources. In order to obtain the target of nearly zero energy consumption, the electrical loads and the energy sources related to the NZEB building can be organized as a Microgrid, which needs to be optimally sized in his components. The optimal sizing of a Microgrid for NZEBs can be formulated as multi-objective problem. In fact, for the NZEB owner exists an economic target aimed at maximizing profits from microgeneration, a different one aimed solely to minimize the energy bought from the market and an environmental target aimed at minimizing the global CO2 emissions. These objectives can enter into conflict and create the need for combined optimization. In this paper, this optimization problem is investigated with an integrated framework addressing the multi-objective optimization and multi-criteria evaluation issues simultaneously. Minimize the investment cost, maximize the fraction of energy self-consumed with renewable energy sources and reduce the CO2 emissions will be considered as three objectives for multi-objective optimization. The proposed methodology is applied to a microgrid for a NZEB public building. The simulation results show the effectiveness of the proposed methodology.","PeriodicalId":158839,"journal":{"name":"2019 International Conference on Smart Energy Systems and Technologies (SEST)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Multi-Objective and Multi-Criteria Optimization of Microgrids for Nearly Zero-Energy Buildings\",\"authors\":\"Simone Galisai, E. Ghiani, F. Pilo\",\"doi\":\"10.1109/SEST.2019.8849103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nearly zero-energy buildings (NZEBs) are high energy performance buildings in which part of the amount of energy that these buildings require comes mostly from renewable sources. In order to obtain the target of nearly zero energy consumption, the electrical loads and the energy sources related to the NZEB building can be organized as a Microgrid, which needs to be optimally sized in his components. The optimal sizing of a Microgrid for NZEBs can be formulated as multi-objective problem. In fact, for the NZEB owner exists an economic target aimed at maximizing profits from microgeneration, a different one aimed solely to minimize the energy bought from the market and an environmental target aimed at minimizing the global CO2 emissions. These objectives can enter into conflict and create the need for combined optimization. In this paper, this optimization problem is investigated with an integrated framework addressing the multi-objective optimization and multi-criteria evaluation issues simultaneously. Minimize the investment cost, maximize the fraction of energy self-consumed with renewable energy sources and reduce the CO2 emissions will be considered as three objectives for multi-objective optimization. The proposed methodology is applied to a microgrid for a NZEB public building. The simulation results show the effectiveness of the proposed methodology.\",\"PeriodicalId\":158839,\"journal\":{\"name\":\"2019 International Conference on Smart Energy Systems and Technologies (SEST)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Smart Energy Systems and Technologies (SEST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEST.2019.8849103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Smart Energy Systems and Technologies (SEST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEST.2019.8849103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

近零能耗建筑(nzeb)是高能效建筑,这些建筑所需的部分能源主要来自可再生能源。为了达到接近零能耗的目标,与NZEB建筑相关的电力负荷和能源可以组织成一个微电网,需要在其组件中进行优化。nzeb微电网的最优规模可表述为多目标问题。事实上,对于NZEB的所有者来说,存在一个旨在从微型发电中获得最大利润的经济目标,一个单独的目标是最大限度地减少从市场购买的能源,一个环境目标是最大限度地减少全球二氧化碳排放。这些目标可能会产生冲突,从而产生对组合优化的需求。本文采用一个集成的框架来研究该优化问题,同时解决多目标优化和多准则评价问题。将投资成本最小化、可再生能源自用比例最大化和减少CO2排放作为多目标优化的三个目标。提出的方法应用于NZEB公共建筑的微电网。仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-Objective and Multi-Criteria Optimization of Microgrids for Nearly Zero-Energy Buildings
Nearly zero-energy buildings (NZEBs) are high energy performance buildings in which part of the amount of energy that these buildings require comes mostly from renewable sources. In order to obtain the target of nearly zero energy consumption, the electrical loads and the energy sources related to the NZEB building can be organized as a Microgrid, which needs to be optimally sized in his components. The optimal sizing of a Microgrid for NZEBs can be formulated as multi-objective problem. In fact, for the NZEB owner exists an economic target aimed at maximizing profits from microgeneration, a different one aimed solely to minimize the energy bought from the market and an environmental target aimed at minimizing the global CO2 emissions. These objectives can enter into conflict and create the need for combined optimization. In this paper, this optimization problem is investigated with an integrated framework addressing the multi-objective optimization and multi-criteria evaluation issues simultaneously. Minimize the investment cost, maximize the fraction of energy self-consumed with renewable energy sources and reduce the CO2 emissions will be considered as three objectives for multi-objective optimization. The proposed methodology is applied to a microgrid for a NZEB public building. The simulation results show the effectiveness of the proposed methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measurement Data Acquisition System in Laboratory for Renewable Energy Sources Enhancing Short-Circuit Level and Dynamic Reactive Power Exchange in GB Transmission Networks under Low Inertia Scenarios What time-period aggregation method works best for power system operation models with renewables and storage? Primary and Secondary Control in Lossy Inverter-Based Microgrids Analysis of Battery Energy Storage System Integration in a Combined Cycle Power Plant
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1