{"title":"彭宁气体放电等离子体非定常过程的PIC-MCC建模","authors":"A. Dikalyuk, V. O. Gumennov","doi":"10.33257/PHCHGD.19.2.752","DOIUrl":null,"url":null,"abstract":"Modeling of temporal evolution of Penning gas discharge plasma in molecular hydrogen at pressure 0.8 mtorr, anode voltage 800 V and axial magnetic field 330 G is performed in the paper. Simulation is carried out using 2D/3V axisymmetric electrostatic PIC-MCC method. Distinct feature of this work is the addition of dissociative ionization process to kinetic model of Penning gas discharge in molecular hydrogen. In the paper temporal evolution of electrostatic potential, field, charged particles number densities and temperatures in gas discharge chamber are given.","PeriodicalId":309290,"journal":{"name":"Physical-Chemical Kinetics in Gas Dynamics","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling of Unsteady Processes in Penning Gas Discharge Plasma using PIC-MCC Method\",\"authors\":\"A. Dikalyuk, V. O. Gumennov\",\"doi\":\"10.33257/PHCHGD.19.2.752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modeling of temporal evolution of Penning gas discharge plasma in molecular hydrogen at pressure 0.8 mtorr, anode voltage 800 V and axial magnetic field 330 G is performed in the paper. Simulation is carried out using 2D/3V axisymmetric electrostatic PIC-MCC method. Distinct feature of this work is the addition of dissociative ionization process to kinetic model of Penning gas discharge in molecular hydrogen. In the paper temporal evolution of electrostatic potential, field, charged particles number densities and temperatures in gas discharge chamber are given.\",\"PeriodicalId\":309290,\"journal\":{\"name\":\"Physical-Chemical Kinetics in Gas Dynamics\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical-Chemical Kinetics in Gas Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33257/PHCHGD.19.2.752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical-Chemical Kinetics in Gas Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33257/PHCHGD.19.2.752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling of Unsteady Processes in Penning Gas Discharge Plasma using PIC-MCC Method
Modeling of temporal evolution of Penning gas discharge plasma in molecular hydrogen at pressure 0.8 mtorr, anode voltage 800 V and axial magnetic field 330 G is performed in the paper. Simulation is carried out using 2D/3V axisymmetric electrostatic PIC-MCC method. Distinct feature of this work is the addition of dissociative ionization process to kinetic model of Penning gas discharge in molecular hydrogen. In the paper temporal evolution of electrostatic potential, field, charged particles number densities and temperatures in gas discharge chamber are given.