GridGain平台上使用GHSOM算法的文本文档云聚类

M. Sarnovský, Z. Ulbrik
{"title":"GridGain平台上使用GHSOM算法的文本文档云聚类","authors":"M. Sarnovský, Z. Ulbrik","doi":"10.1109/SACI.2013.6608988","DOIUrl":null,"url":null,"abstract":"This paper provides an overview of our research activities aimed on efficient use of distributed computing concepts for text-mining tasks. Work presented within this paper describes the GHSOM (Growing Hierarchical Self-Organizing Maps) algorithm for clustering of text documents and proposes the design and implementation of distributed version of this approach. Proposed implementation is based on JBOWL framework as a base for text mining. For distribution we used MapReduce paradigm implemented within the GridGain framework, which was used as a cloud application platform. Experiments were performed on standard Reuters dataset and for testing purposes we decided to use a simple private cloud infrastructure.","PeriodicalId":304729,"journal":{"name":"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Cloud-based clustering of text documents using the GHSOM algorithm on the GridGain platform\",\"authors\":\"M. Sarnovský, Z. Ulbrik\",\"doi\":\"10.1109/SACI.2013.6608988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides an overview of our research activities aimed on efficient use of distributed computing concepts for text-mining tasks. Work presented within this paper describes the GHSOM (Growing Hierarchical Self-Organizing Maps) algorithm for clustering of text documents and proposes the design and implementation of distributed version of this approach. Proposed implementation is based on JBOWL framework as a base for text mining. For distribution we used MapReduce paradigm implemented within the GridGain framework, which was used as a cloud application platform. Experiments were performed on standard Reuters dataset and for testing purposes we decided to use a simple private cloud infrastructure.\",\"PeriodicalId\":304729,\"journal\":{\"name\":\"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SACI.2013.6608988\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2013.6608988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文概述了我们的研究活动,旨在有效地使用分布式计算概念进行文本挖掘任务。本文介绍的工作描述了用于文本文档聚类的GHSOM(增长层次自组织地图)算法,并提出了该方法的分布式版本的设计和实现。建议的实现是基于JBOWL框架作为文本挖掘的基础。对于分发,我们使用了在GridGain框架内实现的MapReduce范式,该框架被用作云应用平台。实验是在标准的路透社数据集上进行的,出于测试目的,我们决定使用一个简单的私有云基础设施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cloud-based clustering of text documents using the GHSOM algorithm on the GridGain platform
This paper provides an overview of our research activities aimed on efficient use of distributed computing concepts for text-mining tasks. Work presented within this paper describes the GHSOM (Growing Hierarchical Self-Organizing Maps) algorithm for clustering of text documents and proposes the design and implementation of distributed version of this approach. Proposed implementation is based on JBOWL framework as a base for text mining. For distribution we used MapReduce paradigm implemented within the GridGain framework, which was used as a cloud application platform. Experiments were performed on standard Reuters dataset and for testing purposes we decided to use a simple private cloud infrastructure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
V/f control strategy with constant power factor for SPMSM drives, with experiments Spline filtering in accordance to ISO/TS 16610: ANSI C-code for engineers HITS based network algorithm for evaluating the professional skills of wine tasters Performance evaluation of a face detection algorithm running on general purpose operating systems Tumor growth model identification and analysis in case of C38 colon adenocarcinoma and B16 melanoma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1