基于ifc的自主机器人系统语义障碍图生成

Gopee Muhammad Anas, Prieto Samuel A., Borja García de Soto
{"title":"基于ifc的自主机器人系统语义障碍图生成","authors":"Gopee Muhammad Anas, Prieto Samuel A., Borja García de Soto","doi":"10.35490/ec3.2022.161","DOIUrl":null,"url":null,"abstract":"Autonomous Robotic Systems (ARSs) in the construction industry usually have to perform preliminary mapping of construction environments before deployment. For large and complex sites, this can be unpractical and time-consuming, making the avoidance of preliminary mapping a motivation for this study. With Building Information Modeling (BIM), a lot of information is already available about sites. This study proposes a method to make that information available to ARSs to streamline autonomous tasks and remove the need for mapping. This is achieved by automatically generating semantic and color-coded obstacle maps from IFC files. The results are obstacle maps that can be used for autonomous navigation that remove the need for preliminary mapping.","PeriodicalId":142381,"journal":{"name":"Proceedings of the 2022 European Conference on Computing in Construction","volume":" 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"IFC-based generation of semantic obstacle maps for autonomous robotic systems\",\"authors\":\"Gopee Muhammad Anas, Prieto Samuel A., Borja García de Soto\",\"doi\":\"10.35490/ec3.2022.161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous Robotic Systems (ARSs) in the construction industry usually have to perform preliminary mapping of construction environments before deployment. For large and complex sites, this can be unpractical and time-consuming, making the avoidance of preliminary mapping a motivation for this study. With Building Information Modeling (BIM), a lot of information is already available about sites. This study proposes a method to make that information available to ARSs to streamline autonomous tasks and remove the need for mapping. This is achieved by automatically generating semantic and color-coded obstacle maps from IFC files. The results are obstacle maps that can be used for autonomous navigation that remove the need for preliminary mapping.\",\"PeriodicalId\":142381,\"journal\":{\"name\":\"Proceedings of the 2022 European Conference on Computing in Construction\",\"volume\":\" 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 European Conference on Computing in Construction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35490/ec3.2022.161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 European Conference on Computing in Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35490/ec3.2022.161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

建筑行业中的自主机器人系统(ars)在部署前通常需要对建筑环境进行初步测绘。对于大型和复杂的站点,这可能是不切实际和耗时的,因此避免初步绘图是本研究的动机。有了建筑信息模型(BIM),很多关于场地的信息已经可用。本研究提出了一种方法,使这些信息可用于ars,以简化自主任务并消除对映射的需要。这是通过自动从IFC文件生成语义和颜色编码的障碍图来实现的。结果是可以用于自动导航的障碍物地图,无需预先绘制地图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IFC-based generation of semantic obstacle maps for autonomous robotic systems
Autonomous Robotic Systems (ARSs) in the construction industry usually have to perform preliminary mapping of construction environments before deployment. For large and complex sites, this can be unpractical and time-consuming, making the avoidance of preliminary mapping a motivation for this study. With Building Information Modeling (BIM), a lot of information is already available about sites. This study proposes a method to make that information available to ARSs to streamline autonomous tasks and remove the need for mapping. This is achieved by automatically generating semantic and color-coded obstacle maps from IFC files. The results are obstacle maps that can be used for autonomous navigation that remove the need for preliminary mapping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An artificial intelligence and mixed reality approach for optimizing the bridge inspection workflow Towards semantic interoperability for demand-side management: a review of BIM and BAS ontologies GIS and BIM Integration Approaches for Early Railway Planning Phases Investigating energy savings when using iot devices in buildings: a case study in the uk Decision support system for occupancy-oriented facility management: methodology and first results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1