手写体单词识别的词法后处理优化

S. Carbonnel, É. Anquetil
{"title":"手写体单词识别的词法后处理优化","authors":"S. Carbonnel, É. Anquetil","doi":"10.1109/ICDAR.2003.1227711","DOIUrl":null,"url":null,"abstract":"This paper presents a lexical post-processing optimization for handwritten word recognition. The aim of this work is to explore the combination of different lexical post-processing approaches in order to optimize the recognition rate, the recognition time and memory requirements. The present method focuses on the following tasks: a lexicon organization with word filtering, based on holistic word features to deal with large vocabulary (creation of static sublexicon compressed in a tree structure); a dedicated string matching algorithm for online handwriting (to compensate for the recognition and the segmentation errors); and a specific exploration strategy of the results provided by the analytical word recognition process. Experimental results are reported using several lexicon sizes (about 1000, 7000 and 25000 entries) to evaluate different optimization strategies according to the recognition rate, computational cost and memory requirements.","PeriodicalId":249193,"journal":{"name":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Lexical post-processing optimization for handwritten word recognition\",\"authors\":\"S. Carbonnel, É. Anquetil\",\"doi\":\"10.1109/ICDAR.2003.1227711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a lexical post-processing optimization for handwritten word recognition. The aim of this work is to explore the combination of different lexical post-processing approaches in order to optimize the recognition rate, the recognition time and memory requirements. The present method focuses on the following tasks: a lexicon organization with word filtering, based on holistic word features to deal with large vocabulary (creation of static sublexicon compressed in a tree structure); a dedicated string matching algorithm for online handwriting (to compensate for the recognition and the segmentation errors); and a specific exploration strategy of the results provided by the analytical word recognition process. Experimental results are reported using several lexicon sizes (about 1000, 7000 and 25000 entries) to evaluate different optimization strategies according to the recognition rate, computational cost and memory requirements.\",\"PeriodicalId\":249193,\"journal\":{\"name\":\"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2003.1227711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2003.1227711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

提出了一种用于手写体单词识别的词法后处理优化方法。本研究的目的是探索不同词法后处理方法的组合,以优化识别率、识别时间和记忆要求。本方法主要关注以下任务:基于整体词特征的词过滤词典组织,以处理大型词汇表(创建压缩为树结构的静态子词典);用于在线手写的专用字符串匹配算法(补偿识别和分割错误);并对结果提供了具体的探索策略,分析了单词识别过程。根据识别率、计算成本和内存需求,使用不同的词典大小(约1000、7000和25000个条目)来评估不同的优化策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lexical post-processing optimization for handwritten word recognition
This paper presents a lexical post-processing optimization for handwritten word recognition. The aim of this work is to explore the combination of different lexical post-processing approaches in order to optimize the recognition rate, the recognition time and memory requirements. The present method focuses on the following tasks: a lexicon organization with word filtering, based on holistic word features to deal with large vocabulary (creation of static sublexicon compressed in a tree structure); a dedicated string matching algorithm for online handwriting (to compensate for the recognition and the segmentation errors); and a specific exploration strategy of the results provided by the analytical word recognition process. Experimental results are reported using several lexicon sizes (about 1000, 7000 and 25000 entries) to evaluate different optimization strategies according to the recognition rate, computational cost and memory requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of imperfect OCR on part-of-speech tagging Writer identification using innovative binarised features of handwritten numerals Word searching in CCITT group 4 compressed document images Exploiting reliability for dynamic selection of classi .ers by means of genetic algorithms Investigation of off-line Japanese signature verification using a pattern matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1