3D打印的深度学习增强BCI技术

Jahnavi Kachhia, Rashika Natharani, K. George
{"title":"3D打印的深度学习增强BCI技术","authors":"Jahnavi Kachhia, Rashika Natharani, K. George","doi":"10.1109/UEMCON51285.2020.9298124","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to combine Deep Learning with Brain-Computer Interface (BCI) for 3D Printing without human interference. This design will eliminate the intermediate steps and enable people to generate 3D prints faster. To collect the data, subjects are asked to wear g.Nautilus headsets and perform a mental imagery task. These collected brain waves are preprocessed using MATLAB and then are used to train different Neural Network architectures. The Neural Network model recognizes patterns in these brain waves to predict the shape imagined by the user. In this paper, we introduce CNN-LSTM that servers the purpose of classifying objects accurately. Once the shape is identified, the CAD file is generated in STL format using the predefined size. Lastly, this STL file is converted into G-code and serially transferred to the 3D Printer.","PeriodicalId":433609,"journal":{"name":"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deep Learning Enhanced BCI Technology for 3D Printing\",\"authors\":\"Jahnavi Kachhia, Rashika Natharani, K. George\",\"doi\":\"10.1109/UEMCON51285.2020.9298124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to combine Deep Learning with Brain-Computer Interface (BCI) for 3D Printing without human interference. This design will eliminate the intermediate steps and enable people to generate 3D prints faster. To collect the data, subjects are asked to wear g.Nautilus headsets and perform a mental imagery task. These collected brain waves are preprocessed using MATLAB and then are used to train different Neural Network architectures. The Neural Network model recognizes patterns in these brain waves to predict the shape imagined by the user. In this paper, we introduce CNN-LSTM that servers the purpose of classifying objects accurately. Once the shape is identified, the CAD file is generated in STL format using the predefined size. Lastly, this STL file is converted into G-code and serially transferred to the 3D Printer.\",\"PeriodicalId\":433609,\"journal\":{\"name\":\"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UEMCON51285.2020.9298124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON51285.2020.9298124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文的目的是将深度学习与脑机接口(BCI)相结合,实现无人为干扰的3D打印。这种设计将消除中间步骤,使人们能够更快地生成3D打印。为了收集数据,研究对象被要求戴上g.s nautilus耳机,完成一项心理成像任务。利用MATLAB对采集到的脑电波进行预处理,然后用于训练不同的神经网络架构。神经网络模型识别这些脑电波中的模式,以预测用户想象的形状。本文介绍了以准确分类为目的的CNN-LSTM算法。一旦形状被识别,CAD文件生成在STL格式使用预定义的大小。最后,将此STL文件转换为g代码并串行传输到3D打印机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Learning Enhanced BCI Technology for 3D Printing
The purpose of this paper is to combine Deep Learning with Brain-Computer Interface (BCI) for 3D Printing without human interference. This design will eliminate the intermediate steps and enable people to generate 3D prints faster. To collect the data, subjects are asked to wear g.Nautilus headsets and perform a mental imagery task. These collected brain waves are preprocessed using MATLAB and then are used to train different Neural Network architectures. The Neural Network model recognizes patterns in these brain waves to predict the shape imagined by the user. In this paper, we introduce CNN-LSTM that servers the purpose of classifying objects accurately. Once the shape is identified, the CAD file is generated in STL format using the predefined size. Lastly, this STL file is converted into G-code and serially transferred to the 3D Printer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Agile Edge Classification of Ocean Sounds EMG-based Hand Gesture Recognition by Deep Time-frequency Learning for Assisted Living & Rehabilitation A High Security Signature Algorithm Based on Kerberos for REST-style Cloud Storage Service A Comparison of Blockchain-Based Wireless Sensor Network Protocols Computer Vision based License Plate Detection for Automated Vehicle Parking Management System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1