我们的训练数据正确吗?用Dempster Shafer理论评估训练数据的集体置信度

Sangeeta Dey, Seok-Won Lee
{"title":"我们的训练数据正确吗?用Dempster Shafer理论评估训练数据的集体置信度","authors":"Sangeeta Dey, Seok-Won Lee","doi":"10.1145/3510455.3512779","DOIUrl":null,"url":null,"abstract":"The latest trend of incorporating various data-centric machine learning (ML) models in software-intensive systems has posed new challenges in the quality assurance practice of software engineering, especially in a high-risk environment. ML experts are now focusing on explaining ML models to assure the safe behavior of ML-based systems. However, not enough attention has been paid to explain the inherent uncertainty of the training data. The current practice of ML-based system engineering lacks transparency in the systematic fitness assessment process of the training data before engaging in the rigorous ML model training. We propose a method of assessing the collective confidence in the quality of a training dataset by using Dempster Shafer theory and its modified combination rule (Yager’s rule). With the example of training datasets for pedestrian detection of autonomous vehicles, we demonstrate how the proposed approach can be used by the stakeholders with diverse expertise to combine their beliefs in the quality arguments and evidences about the data. Our results open up a scope of future research on data requirements engineering that can facilitate evidence-based data assurance for ML-based safety-critical systems. CCS CONCEPTS•Software and its engineering $\\rightarrow$Risk management; Collaboration in software development;•Mathematics of computing $\\rightarrow$ Hypothesis testing and confidence interval computation.","PeriodicalId":416186,"journal":{"name":"2022 IEEE/ACM 44th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Are We Training with The Right Data? Evaluating Collective Confidence in Training Data using Dempster Shafer Theory\",\"authors\":\"Sangeeta Dey, Seok-Won Lee\",\"doi\":\"10.1145/3510455.3512779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The latest trend of incorporating various data-centric machine learning (ML) models in software-intensive systems has posed new challenges in the quality assurance practice of software engineering, especially in a high-risk environment. ML experts are now focusing on explaining ML models to assure the safe behavior of ML-based systems. However, not enough attention has been paid to explain the inherent uncertainty of the training data. The current practice of ML-based system engineering lacks transparency in the systematic fitness assessment process of the training data before engaging in the rigorous ML model training. We propose a method of assessing the collective confidence in the quality of a training dataset by using Dempster Shafer theory and its modified combination rule (Yager’s rule). With the example of training datasets for pedestrian detection of autonomous vehicles, we demonstrate how the proposed approach can be used by the stakeholders with diverse expertise to combine their beliefs in the quality arguments and evidences about the data. Our results open up a scope of future research on data requirements engineering that can facilitate evidence-based data assurance for ML-based safety-critical systems. CCS CONCEPTS•Software and its engineering $\\\\rightarrow$Risk management; Collaboration in software development;•Mathematics of computing $\\\\rightarrow$ Hypothesis testing and confidence interval computation.\",\"PeriodicalId\":416186,\"journal\":{\"name\":\"2022 IEEE/ACM 44th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM 44th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3510455.3512779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 44th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3510455.3512779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在软件密集型系统中整合各种以数据为中心的机器学习(ML)模型的最新趋势给软件工程的质量保证实践带来了新的挑战,特别是在高风险环境中。机器学习专家现在专注于解释机器学习模型,以确保基于机器学习的系统的安全行为。然而,对训练数据固有的不确定性的解释却没有引起足够的重视。目前基于机器学习的系统工程实践在进行严格的机器学习模型训练之前,训练数据的系统适应度评估过程缺乏透明度。我们提出了一种利用Dempster Shafer理论及其改进的组合规则(Yager规则)来评估训练数据集质量的集体置信度的方法。以自动驾驶车辆行人检测的训练数据集为例,我们展示了具有不同专业知识的利益相关者如何使用所提出的方法来结合他们对数据质量论点和证据的信念。我们的研究结果为数据需求工程的未来研究开辟了一个范围,可以促进基于ml的安全关键系统的循证数据保证。CCS CONCEPTS软件及其工程风险管理;软件开发中的协作;•计算的数学假设检验和置信区间计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Are We Training with The Right Data? Evaluating Collective Confidence in Training Data using Dempster Shafer Theory
The latest trend of incorporating various data-centric machine learning (ML) models in software-intensive systems has posed new challenges in the quality assurance practice of software engineering, especially in a high-risk environment. ML experts are now focusing on explaining ML models to assure the safe behavior of ML-based systems. However, not enough attention has been paid to explain the inherent uncertainty of the training data. The current practice of ML-based system engineering lacks transparency in the systematic fitness assessment process of the training data before engaging in the rigorous ML model training. We propose a method of assessing the collective confidence in the quality of a training dataset by using Dempster Shafer theory and its modified combination rule (Yager’s rule). With the example of training datasets for pedestrian detection of autonomous vehicles, we demonstrate how the proposed approach can be used by the stakeholders with diverse expertise to combine their beliefs in the quality arguments and evidences about the data. Our results open up a scope of future research on data requirements engineering that can facilitate evidence-based data assurance for ML-based safety-critical systems. CCS CONCEPTS•Software and its engineering $\rightarrow$Risk management; Collaboration in software development;•Mathematics of computing $\rightarrow$ Hypothesis testing and confidence interval computation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigating User Perceptions of Conversational Agents for Software-related ExploratoryWeb Search Black Box Technique to Reduce Energy Consumption of Android Apps Utilizing Persistence for Post Facto Suppression of Invalid Anomalies Using System Logs Statistical Reasoning About Programs Title Page iii
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1