基于Lambeq工具包的量子自然语言处理情感分析

Srinjoy Ganguly, Sai Nandan Morapakula, Luis Miguel Pozo Coronado
{"title":"基于Lambeq工具包的量子自然语言处理情感分析","authors":"Srinjoy Ganguly, Sai Nandan Morapakula, Luis Miguel Pozo Coronado","doi":"10.1109/ICPC2T53885.2022.9776836","DOIUrl":null,"url":null,"abstract":"Sentiment classification is one of the best use cases of classical natural language processing (NLP). We witness its power in various domains such as banking, business, and the marketing industry. We already know how classical AI and machine learning can change and improve technology. Quantum natural language processing (QNLP) is a young and gradually emerging technology that can provide a quantum advantage for NLP tasks. In this paper, we show the first application of QNLP for sentiment analysis and achieve perfect test set accuracy for three different kinds of simulations and decent accuracy for experiments run on a noisy quantum device. We utilize the lambeq QNLP toolkit and t|ket > by Cambridge Quantum (Quantinuum) to produce the results.","PeriodicalId":283298,"journal":{"name":"2022 Second International Conference on Power, Control and Computing Technologies (ICPC2T)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Quantum Natural Language Processing Based Sentiment Analysis Using Lambeq Toolkit\",\"authors\":\"Srinjoy Ganguly, Sai Nandan Morapakula, Luis Miguel Pozo Coronado\",\"doi\":\"10.1109/ICPC2T53885.2022.9776836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sentiment classification is one of the best use cases of classical natural language processing (NLP). We witness its power in various domains such as banking, business, and the marketing industry. We already know how classical AI and machine learning can change and improve technology. Quantum natural language processing (QNLP) is a young and gradually emerging technology that can provide a quantum advantage for NLP tasks. In this paper, we show the first application of QNLP for sentiment analysis and achieve perfect test set accuracy for three different kinds of simulations and decent accuracy for experiments run on a noisy quantum device. We utilize the lambeq QNLP toolkit and t|ket > by Cambridge Quantum (Quantinuum) to produce the results.\",\"PeriodicalId\":283298,\"journal\":{\"name\":\"2022 Second International Conference on Power, Control and Computing Technologies (ICPC2T)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Second International Conference on Power, Control and Computing Technologies (ICPC2T)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPC2T53885.2022.9776836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Second International Conference on Power, Control and Computing Technologies (ICPC2T)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPC2T53885.2022.9776836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

情感分类是经典自然语言处理(NLP)的最佳用例之一。我们在银行、商业和营销行业等各个领域见证了它的力量。我们已经知道经典的人工智能和机器学习如何改变和改进技术。量子自然语言处理(Quantum natural language processing, QNLP)是一项新兴的技术,可以为自然语言处理任务提供量子优势。在本文中,我们展示了QNLP在情感分析中的首次应用,并在三种不同类型的模拟中实现了完美的测试集准确性,并在噪声量子设备上运行的实验中实现了不错的准确性。我们利用lambeq QNLP工具包和剑桥量子(Quantum)的t|ket >来产生结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantum Natural Language Processing Based Sentiment Analysis Using Lambeq Toolkit
Sentiment classification is one of the best use cases of classical natural language processing (NLP). We witness its power in various domains such as banking, business, and the marketing industry. We already know how classical AI and machine learning can change and improve technology. Quantum natural language processing (QNLP) is a young and gradually emerging technology that can provide a quantum advantage for NLP tasks. In this paper, we show the first application of QNLP for sentiment analysis and achieve perfect test set accuracy for three different kinds of simulations and decent accuracy for experiments run on a noisy quantum device. We utilize the lambeq QNLP toolkit and t|ket > by Cambridge Quantum (Quantinuum) to produce the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of a Single Inductor Based Two Input Two Output DC-DC Converter Power Management Scheme with Cascaded Complex Coefficient Filter Control for SyRG DG-SPV-BES Based Standalone System for Remote Areas Sentiment Analysis in Customer Experience in Philippine Courier Delivery Services using VADER Algorithm Thru Chatbot Interviews Design of Automatic Charging System for Electric Vehicles using Rigid-Flexible Manipulator Switched Capacitor Based High-Gain DC-DC Converter for Low-Voltage Power Generation Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1