基于位置服务的协同空间对象推荐

G. Gupta, Wang-Chien Lee
{"title":"基于位置服务的协同空间对象推荐","authors":"G. Gupta, Wang-Chien Lee","doi":"10.1109/ICPPW.2010.16","DOIUrl":null,"url":null,"abstract":"Recommendation systems have found their ways into many on-line web applications, e.g., product recommendation on Amazon and movie recommendation on Netflix. Particularly, collaborative filtering techniques have been widely used in these systems to personalize the recommendations according to the needs and tastes of users. In this paper, we apply collaborative filtering in spatial object recommendation which is essential in many location based services. Due to the large number of spatial objects and participating users, using collaborative filtering to obtain recommendations for a particular user can be very expensive. However, we observe that users tend to have affinity for some regions and argue that using users with similar regional bias in recommendation may help in reducing the search space of similar users. Thus, we propose two techniques, namely, Access Minimum Bounding Rectangle Overlapped Area (AMBROA) and Grid Division Cosine Similarity (GDCS), to form regions of interests that represent user location interests and activities and to find users with local access similarity to facilitate effective spatial object recommendation. We conduct an extensive performance evaluation to validate our ideas. Evaluation result demonstrates the superiority of our proposal over the conventional approach.","PeriodicalId":415472,"journal":{"name":"2010 39th International Conference on Parallel Processing Workshops","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Collaborative Spatial Object Recommendation in Location Based Services\",\"authors\":\"G. Gupta, Wang-Chien Lee\",\"doi\":\"10.1109/ICPPW.2010.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommendation systems have found their ways into many on-line web applications, e.g., product recommendation on Amazon and movie recommendation on Netflix. Particularly, collaborative filtering techniques have been widely used in these systems to personalize the recommendations according to the needs and tastes of users. In this paper, we apply collaborative filtering in spatial object recommendation which is essential in many location based services. Due to the large number of spatial objects and participating users, using collaborative filtering to obtain recommendations for a particular user can be very expensive. However, we observe that users tend to have affinity for some regions and argue that using users with similar regional bias in recommendation may help in reducing the search space of similar users. Thus, we propose two techniques, namely, Access Minimum Bounding Rectangle Overlapped Area (AMBROA) and Grid Division Cosine Similarity (GDCS), to form regions of interests that represent user location interests and activities and to find users with local access similarity to facilitate effective spatial object recommendation. We conduct an extensive performance evaluation to validate our ideas. Evaluation result demonstrates the superiority of our proposal over the conventional approach.\",\"PeriodicalId\":415472,\"journal\":{\"name\":\"2010 39th International Conference on Parallel Processing Workshops\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 39th International Conference on Parallel Processing Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPPW.2010.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 39th International Conference on Parallel Processing Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPPW.2010.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

推荐系统已经在许多在线网络应用中找到了自己的方式,例如,亚马逊的产品推荐和Netflix的电影推荐。特别是,协同过滤技术已被广泛应用于这些系统中,以根据用户的需求和品味进行个性化推荐。在本文中,我们将协同过滤应用于空间对象推荐中,这在许多基于位置的服务中是必不可少的。由于有大量的空间对象和参与的用户,使用协同过滤来获得针对特定用户的推荐可能非常昂贵。然而,我们观察到用户倾向于对某些区域具有亲和力,并认为在推荐中使用具有相似区域偏见的用户可能有助于减少相似用户的搜索空间。因此,我们提出了两种技术,即访问最小边界矩形重叠区域(AMBROA)和网格划分余弦相似度(GDCS),以形成代表用户位置兴趣和活动的兴趣区域,并找到具有局部访问相似度的用户,以便进行有效的空间对象推荐。我们进行广泛的绩效评估来验证我们的想法。评价结果表明,该方法优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Collaborative Spatial Object Recommendation in Location Based Services
Recommendation systems have found their ways into many on-line web applications, e.g., product recommendation on Amazon and movie recommendation on Netflix. Particularly, collaborative filtering techniques have been widely used in these systems to personalize the recommendations according to the needs and tastes of users. In this paper, we apply collaborative filtering in spatial object recommendation which is essential in many location based services. Due to the large number of spatial objects and participating users, using collaborative filtering to obtain recommendations for a particular user can be very expensive. However, we observe that users tend to have affinity for some regions and argue that using users with similar regional bias in recommendation may help in reducing the search space of similar users. Thus, we propose two techniques, namely, Access Minimum Bounding Rectangle Overlapped Area (AMBROA) and Grid Division Cosine Similarity (GDCS), to form regions of interests that represent user location interests and activities and to find users with local access similarity to facilitate effective spatial object recommendation. We conduct an extensive performance evaluation to validate our ideas. Evaluation result demonstrates the superiority of our proposal over the conventional approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GEM: Graphical Explorer of MPI Programs Predictive Space- and Time-Resource Allocation for Parallel Job Scheduling in Clusters, Grids, Clouds WS4D: Toolkits for Networked Embedded Systems Based on the Devices Profile for Web Services A Multi-hop Walkie-Talkie-Like Emergency Communication System for Catastrophic Natural Disasters Message Driven Programming with S-Net: Methodology and Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1