基于图像的恶意软件分析的鲁棒深度学习分类器设计

Giacomo Iadarola, F. Mercaldo, Fabio Martinelli, A. Santone
{"title":"基于图像的恶意软件分析的鲁棒深度学习分类器设计","authors":"Giacomo Iadarola, F. Mercaldo, Fabio Martinelli, A. Santone","doi":"10.1109/ICDCS54860.2022.00126","DOIUrl":null,"url":null,"abstract":"Deep Learning models demonstrated high accuracies performance in malware classification, but they are still lacking \"explainability\" to ensure robustness and reliability in the generated prediction. In this short contribution, we summarize the researches that we conducted in the latest years in the Malware Analysis field.","PeriodicalId":225883,"journal":{"name":"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Designing Robust Deep Learning Classifiers for Image-based Malware Analysis\",\"authors\":\"Giacomo Iadarola, F. Mercaldo, Fabio Martinelli, A. Santone\",\"doi\":\"10.1109/ICDCS54860.2022.00126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep Learning models demonstrated high accuracies performance in malware classification, but they are still lacking \\\"explainability\\\" to ensure robustness and reliability in the generated prediction. In this short contribution, we summarize the researches that we conducted in the latest years in the Malware Analysis field.\",\"PeriodicalId\":225883,\"journal\":{\"name\":\"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS54860.2022.00126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS54860.2022.00126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

深度学习模型在恶意软件分类中表现出较高的准确率,但在生成的预测中仍然缺乏“可解释性”来保证鲁棒性和可靠性。在这篇简短的文章中,我们总结了近年来在恶意软件分析领域所进行的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Designing Robust Deep Learning Classifiers for Image-based Malware Analysis
Deep Learning models demonstrated high accuracies performance in malware classification, but they are still lacking "explainability" to ensure robustness and reliability in the generated prediction. In this short contribution, we summarize the researches that we conducted in the latest years in the Malware Analysis field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nezha: Exploiting Concurrency for Transaction Processing in DAG-based Blockchains Toward Cleansing Backdoored Neural Networks in Federated Learning Themis: An Equal, Unpredictable, and Scalable Consensus for Consortium Blockchain IoDSCF: A Store-Carry-Forward Routing Protocol for joint Bus Networks and Internet of Drones FlowValve: Packet Scheduling Offloaded on NP-based SmartNICs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1