记忆电容-电感振荡电路的小信号模型

S. Yener, R. Mutlu
{"title":"记忆电容-电感振荡电路的小信号模型","authors":"S. Yener, R. Mutlu","doi":"10.1109/EBBT.2017.7956774","DOIUrl":null,"url":null,"abstract":"To extend the concept of the memristive systems to capacitive systems, memcapacitive systems have been described in 2009. Memcapacitors which are a subset of memcapacitive systems are flux-dependent nonlinear circuit elements with memory. Materials with memcapacitive properties has already been reported in literature. The elusive memcapacitor show promise for new type of applications because of their unusual characteristics which cannot be mimicked with linear circuit elements. Since these elements are not commercially available yet, their analytical solutions and simulation studies are very important. Then these solutions may provide valuable insight for their usage, behavior and predicting of their new application areas. In this study, a memcapacitor-inductor oscillation circuit is examined using simulations and also its small signal equivalent circuit is obtained using perturbation theory since such a circuit does not have an exact solution.","PeriodicalId":293165,"journal":{"name":"2017 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Small signal model of memcapacitor-inductor oscillation circuit\",\"authors\":\"S. Yener, R. Mutlu\",\"doi\":\"10.1109/EBBT.2017.7956774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To extend the concept of the memristive systems to capacitive systems, memcapacitive systems have been described in 2009. Memcapacitors which are a subset of memcapacitive systems are flux-dependent nonlinear circuit elements with memory. Materials with memcapacitive properties has already been reported in literature. The elusive memcapacitor show promise for new type of applications because of their unusual characteristics which cannot be mimicked with linear circuit elements. Since these elements are not commercially available yet, their analytical solutions and simulation studies are very important. Then these solutions may provide valuable insight for their usage, behavior and predicting of their new application areas. In this study, a memcapacitor-inductor oscillation circuit is examined using simulations and also its small signal equivalent circuit is obtained using perturbation theory since such a circuit does not have an exact solution.\",\"PeriodicalId\":293165,\"journal\":{\"name\":\"2017 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT)\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EBBT.2017.7956774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EBBT.2017.7956774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了将记忆系统的概念扩展到电容系统,2009年对记忆系统进行了描述。记忆电容是一种具有记忆能力的非线性电路元件,属于记忆电容系统的一个子集。文献中已经报道了具有记忆电容特性的材料。难以捉摸的memcapacitor由于其不寻常的特性而显示出新的应用前景,这些特性是线性电路元件无法模仿的。由于这些元素尚未商业化,因此它们的分析解和模拟研究非常重要。然后,这些解决方案可能为它们的使用、行为和新应用领域的预测提供有价值的见解。在本研究中,我们用模拟的方法研究了一个忆容电感振荡电路,并利用微扰理论得到了它的小信号等效电路,因为这种电路没有精确解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Small signal model of memcapacitor-inductor oscillation circuit
To extend the concept of the memristive systems to capacitive systems, memcapacitive systems have been described in 2009. Memcapacitors which are a subset of memcapacitive systems are flux-dependent nonlinear circuit elements with memory. Materials with memcapacitive properties has already been reported in literature. The elusive memcapacitor show promise for new type of applications because of their unusual characteristics which cannot be mimicked with linear circuit elements. Since these elements are not commercially available yet, their analytical solutions and simulation studies are very important. Then these solutions may provide valuable insight for their usage, behavior and predicting of their new application areas. In this study, a memcapacitor-inductor oscillation circuit is examined using simulations and also its small signal equivalent circuit is obtained using perturbation theory since such a circuit does not have an exact solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection of injured kidney in computed tomography Predictive cruise control Effects of aerobic capacity, age and gender on brain neural matter Electromagnetic radiation interaction and pollution measurements Characterization of a bend sensor for neuroprosthetic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1