高精度高光谱解混高阶非线性混合模型的迭代增强

A. Marinoni, J. Plaza, A. Plaza, P. Gamba
{"title":"高精度高光谱解混高阶非线性混合模型的迭代增强","authors":"A. Marinoni, J. Plaza, A. Plaza, P. Gamba","doi":"10.1109/WHISPERS.2016.8071776","DOIUrl":null,"url":null,"abstract":"In order to provide a careful description of the interactions among endmembers in hyperspectral images, a new method for adaptive design of mixture models for hyperspectral unmixing is introduced. Specifically, the proposed approach relies on exploiting geometrical features of hyperspectral signatures in terms of nonorthogonal projections onto the space induced by the endmembers' spectra. Then, an iterative process is deployed in order to understand the order of local nonlinearity that is displayed by each endmember over every pixel. Experimental results show that the proposed approach is actually able to retrieve thorough information on the nature of the nonlinear effects over the image while providing excellent performance in reconstructing the given dataset.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An iterative enhancement of higher order nonlinear mixture model for accurate hyperspectral unmixing\",\"authors\":\"A. Marinoni, J. Plaza, A. Plaza, P. Gamba\",\"doi\":\"10.1109/WHISPERS.2016.8071776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to provide a careful description of the interactions among endmembers in hyperspectral images, a new method for adaptive design of mixture models for hyperspectral unmixing is introduced. Specifically, the proposed approach relies on exploiting geometrical features of hyperspectral signatures in terms of nonorthogonal projections onto the space induced by the endmembers' spectra. Then, an iterative process is deployed in order to understand the order of local nonlinearity that is displayed by each endmember over every pixel. Experimental results show that the proposed approach is actually able to retrieve thorough information on the nature of the nonlinear effects over the image while providing excellent performance in reconstructing the given dataset.\",\"PeriodicalId\":369281,\"journal\":{\"name\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2016.8071776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了更好地描述高光谱图像中端元之间的相互作用,提出了一种用于高光谱解混的混合模型自适应设计方法。具体而言,所提出的方法依赖于利用端元光谱在空间上的非正交投影的高光谱特征的几何特征。然后,为了了解每个端元在每个像素上显示的局部非线性的顺序,部署了一个迭代过程。实验结果表明,该方法能够检索到图像上非线性效应性质的完整信息,同时在给定数据集的重构中提供了优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An iterative enhancement of higher order nonlinear mixture model for accurate hyperspectral unmixing
In order to provide a careful description of the interactions among endmembers in hyperspectral images, a new method for adaptive design of mixture models for hyperspectral unmixing is introduced. Specifically, the proposed approach relies on exploiting geometrical features of hyperspectral signatures in terms of nonorthogonal projections onto the space induced by the endmembers' spectra. Then, an iterative process is deployed in order to understand the order of local nonlinearity that is displayed by each endmember over every pixel. Experimental results show that the proposed approach is actually able to retrieve thorough information on the nature of the nonlinear effects over the image while providing excellent performance in reconstructing the given dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hyperspectral and color-infrared imaging from ultralight aircraft: Potential to recognize tree species in urban environments Mapping land covers of brussels capital region using spatially enhanced hyperspectral images Morpho-spectral objects classification by hyperspectral airborne imagery Land-cover monitoring using time-series hyperspectral data via fractional-order darwinian particle swarm optimization segmentation Nonnegative CP decomposition of multiangle hyperspectral data: A case study on CRISM observations of Martian ICY surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1