结合深度神经网络和支持向量机及PCA改进波斯语数字识别

Amir. M Mousavi. H, A. Bossaghzadeh
{"title":"结合深度神经网络和支持向量机及PCA改进波斯语数字识别","authors":"Amir. M Mousavi. H, A. Bossaghzadeh","doi":"10.1109/MVIP49855.2020.9116893","DOIUrl":null,"url":null,"abstract":"One of the machine vision tasks is optical character recognition (OCR) that researchers in this field are trying to achieve a high performance and accuracy in the classification task. In this paper, we have used a fine tuned deep Neural networks for Hoda dataset, which is the largest dataset for Persian handwritten digit classification, to extract valuable discriminative features. then, these features are fed to a linear support vector machine (SVM) for classification part. In the next experiment, In order to improve the accuracy and computational load, we applied the Principal component analysis (PCA) to reduce the extracted features dimensions then we fed it to SVM. To the best of our knowledge the proposed method was better than other methods in terms of accuracy measure","PeriodicalId":255375,"journal":{"name":"2020 International Conference on Machine Vision and Image Processing (MVIP)","volume":"62 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Improving Persian Digit Recognition by Combining Deep Neural Networks and SVM and Using PCA\",\"authors\":\"Amir. M Mousavi. H, A. Bossaghzadeh\",\"doi\":\"10.1109/MVIP49855.2020.9116893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the machine vision tasks is optical character recognition (OCR) that researchers in this field are trying to achieve a high performance and accuracy in the classification task. In this paper, we have used a fine tuned deep Neural networks for Hoda dataset, which is the largest dataset for Persian handwritten digit classification, to extract valuable discriminative features. then, these features are fed to a linear support vector machine (SVM) for classification part. In the next experiment, In order to improve the accuracy and computational load, we applied the Principal component analysis (PCA) to reduce the extracted features dimensions then we fed it to SVM. To the best of our knowledge the proposed method was better than other methods in terms of accuracy measure\",\"PeriodicalId\":255375,\"journal\":{\"name\":\"2020 International Conference on Machine Vision and Image Processing (MVIP)\",\"volume\":\"62 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Machine Vision and Image Processing (MVIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MVIP49855.2020.9116893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Machine Vision and Image Processing (MVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MVIP49855.2020.9116893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

光学字符识别(OCR)是机器视觉任务之一,该领域的研究人员正在努力在分类任务中实现高性能和准确性。在本文中,我们对Hoda数据集(这是波斯语手写数字分类的最大数据集)使用微调深度神经网络来提取有价值的判别特征。然后,将这些特征输入到线性支持向量机(SVM)中进行分类。在接下来的实验中,为了提高准确率和计算量,我们使用主成分分析(PCA)对提取的特征进行降维,然后将其输入支持向量机。据我们所知,所提出的方法在精度测量方面优于其他方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving Persian Digit Recognition by Combining Deep Neural Networks and SVM and Using PCA
One of the machine vision tasks is optical character recognition (OCR) that researchers in this field are trying to achieve a high performance and accuracy in the classification task. In this paper, we have used a fine tuned deep Neural networks for Hoda dataset, which is the largest dataset for Persian handwritten digit classification, to extract valuable discriminative features. then, these features are fed to a linear support vector machine (SVM) for classification part. In the next experiment, In order to improve the accuracy and computational load, we applied the Principal component analysis (PCA) to reduce the extracted features dimensions then we fed it to SVM. To the best of our knowledge the proposed method was better than other methods in terms of accuracy measure
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Offline Handwritten Signature Verification and Recognition Based on Deep Transfer Learning A High-Accuracy, Cost-Effective People Counting Solution Based on Visual Depth Data Source Camera Identification Using WLBP Descriptor Convolutional Neural Network for Building Extraction from High-Resolution Remote Sensing Images PCB Defect Detection Using Denoising Convolutional Autoencoders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1