在基于信息检索的bug定位中引入版本历史

Bunyamin Sisman, A. Kak
{"title":"在基于信息检索的bug定位中引入版本历史","authors":"Bunyamin Sisman, A. Kak","doi":"10.1109/MSR.2012.6224299","DOIUrl":null,"url":null,"abstract":"Fast and accurate localization of software defects continues to be a difficult problem since defects can emanate from a large variety of sources and can often be intricate in nature. In this paper, we show how version histories of a software project can be used to estimate a prior probability distribution for defect proneness associated with the files in a given version of the project. Subsequently, these priors are used in an IR (Information Retrieval) framework to determine the posterior probability of a file being the cause of a bug. We first present two models to estimate the priors, one from the defect histories and the other from the modification histories, with both types of histories as stored in the versioning tools. Referring to these as the base models, we then extend them by incorporating a temporal decay into the estimation of the priors. We show that by just including the base models, the mean average precision (MAP) for bug localization improves by as much as 30%. And when we also factor in the time decay in the estimates of the priors, the improvements in MAP can be as large as 80%.","PeriodicalId":383774,"journal":{"name":"2012 9th IEEE Working Conference on Mining Software Repositories (MSR)","volume":" 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"101","resultStr":"{\"title\":\"Incorporating version histories in Information Retrieval based bug localization\",\"authors\":\"Bunyamin Sisman, A. Kak\",\"doi\":\"10.1109/MSR.2012.6224299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fast and accurate localization of software defects continues to be a difficult problem since defects can emanate from a large variety of sources and can often be intricate in nature. In this paper, we show how version histories of a software project can be used to estimate a prior probability distribution for defect proneness associated with the files in a given version of the project. Subsequently, these priors are used in an IR (Information Retrieval) framework to determine the posterior probability of a file being the cause of a bug. We first present two models to estimate the priors, one from the defect histories and the other from the modification histories, with both types of histories as stored in the versioning tools. Referring to these as the base models, we then extend them by incorporating a temporal decay into the estimation of the priors. We show that by just including the base models, the mean average precision (MAP) for bug localization improves by as much as 30%. And when we also factor in the time decay in the estimates of the priors, the improvements in MAP can be as large as 80%.\",\"PeriodicalId\":383774,\"journal\":{\"name\":\"2012 9th IEEE Working Conference on Mining Software Repositories (MSR)\",\"volume\":\" 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"101\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 9th IEEE Working Conference on Mining Software Repositories (MSR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MSR.2012.6224299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 9th IEEE Working Conference on Mining Software Repositories (MSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSR.2012.6224299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 101

摘要

快速而准确地定位软件缺陷仍然是一个困难的问题,因为缺陷可能来自各种各样的来源,并且通常在本质上是复杂的。在本文中,我们展示了如何使用软件项目的版本历史来估计与项目的给定版本中的文件相关的缺陷倾向的先验概率分布。随后,这些先验在IR(信息检索)框架中使用,以确定文件是导致错误的原因的后验概率。我们首先提出了两个模型来评估先验,一个来自缺陷历史,另一个来自修改历史,这两种类型的历史都存储在版本控制工具中。参考这些作为基本模型,然后我们通过将时间衰减纳入先验估计来扩展它们。我们发现,通过只包含基本模型,bug定位的平均精度(MAP)提高了30%。当我们在先验估计中也考虑到时间衰减时,MAP的改进可以高达80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Incorporating version histories in Information Retrieval based bug localization
Fast and accurate localization of software defects continues to be a difficult problem since defects can emanate from a large variety of sources and can often be intricate in nature. In this paper, we show how version histories of a software project can be used to estimate a prior probability distribution for defect proneness associated with the files in a given version of the project. Subsequently, these priors are used in an IR (Information Retrieval) framework to determine the posterior probability of a file being the cause of a bug. We first present two models to estimate the priors, one from the defect histories and the other from the modification histories, with both types of histories as stored in the versioning tools. Referring to these as the base models, we then extend them by incorporating a temporal decay into the estimation of the priors. We show that by just including the base models, the mean average precision (MAP) for bug localization improves by as much as 30%. And when we also factor in the time decay in the estimates of the priors, the improvements in MAP can be as large as 80%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MINCE: Mining change history of Android project Co-evolution of logical couplings and commits for defect estimation Analysis of customer satisfaction survey data Do faster releases improve software quality? An empirical case study of Mozilla Firefox Why do software packages conflict?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1