CET:用于SaaS应用程序的多租户数据库中的集群扩展表研究

Lei Qiu, Yongqing Zheng, Yuliang Shi, Chengliang Sang
{"title":"CET:用于SaaS应用程序的多租户数据库中的集群扩展表研究","authors":"Lei Qiu, Yongqing Zheng, Yuliang Shi, Chengliang Sang","doi":"10.1109/ICIST.2013.6747617","DOIUrl":null,"url":null,"abstract":"Microsoft's ET (extension table) approach makes the data model arbitrarily extensible while retaining the cost benefits of using a shared database. But it adds complexity for database querying and updating. We improve it and propose CET (Clustering Extension Table). There are several tables in CET, including BT (Basic Table), CT (Clustering Table), CMT (Metadata Table for CT), ET (Extension Table) and EMT (Metadata Table for ET). The similarity of tenants is adopted to cluster them into different groups. In the group, some data in the basic table and extension table is transformed and consolidated together into the CT (Clustering Table). In one group, CT extracts the common similarity of the tenants in the group to avoid the complexity of using ET. Then SER (Schema Efficiency Ratio) and DER (Data Efficiency Ratio) are described to control tenants' adscription into their groups. Experiments are also conducted to show the improvement of ET.","PeriodicalId":415759,"journal":{"name":"2013 IEEE Third International Conference on Information Science and Technology (ICIST)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"CET: Clustering Extension Table research in multi-tenant database for SaaS applications\",\"authors\":\"Lei Qiu, Yongqing Zheng, Yuliang Shi, Chengliang Sang\",\"doi\":\"10.1109/ICIST.2013.6747617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microsoft's ET (extension table) approach makes the data model arbitrarily extensible while retaining the cost benefits of using a shared database. But it adds complexity for database querying and updating. We improve it and propose CET (Clustering Extension Table). There are several tables in CET, including BT (Basic Table), CT (Clustering Table), CMT (Metadata Table for CT), ET (Extension Table) and EMT (Metadata Table for ET). The similarity of tenants is adopted to cluster them into different groups. In the group, some data in the basic table and extension table is transformed and consolidated together into the CT (Clustering Table). In one group, CT extracts the common similarity of the tenants in the group to avoid the complexity of using ET. Then SER (Schema Efficiency Ratio) and DER (Data Efficiency Ratio) are described to control tenants' adscription into their groups. Experiments are also conducted to show the improvement of ET.\",\"PeriodicalId\":415759,\"journal\":{\"name\":\"2013 IEEE Third International Conference on Information Science and Technology (ICIST)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Third International Conference on Information Science and Technology (ICIST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIST.2013.6747617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Third International Conference on Information Science and Technology (ICIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST.2013.6747617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

Microsoft的ET(扩展表)方法使数据模型可以任意扩展,同时保留使用共享数据库的成本优势。但是它增加了数据库查询和更新的复杂性。对其进行改进,提出了CET(聚类扩展表)。CET有几个表,包括BT(基本表)、CT(聚类表)、CMT (CT元数据表)、ET(扩展表)和EMT (ET元数据表)。利用租户的相似性将其聚类成不同的组。在分组中,基本表和扩展表中的部分数据被转换并合并到CT (Clustering table)中。在一组中,CT提取组中租户的共同相似度,以避免使用ET的复杂性。然后描述SER (Schema Efficiency Ratio)和DER (Data Efficiency Ratio),以控制租户对其组的描述。实验也证明了ET的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CET: Clustering Extension Table research in multi-tenant database for SaaS applications
Microsoft's ET (extension table) approach makes the data model arbitrarily extensible while retaining the cost benefits of using a shared database. But it adds complexity for database querying and updating. We improve it and propose CET (Clustering Extension Table). There are several tables in CET, including BT (Basic Table), CT (Clustering Table), CMT (Metadata Table for CT), ET (Extension Table) and EMT (Metadata Table for ET). The similarity of tenants is adopted to cluster them into different groups. In the group, some data in the basic table and extension table is transformed and consolidated together into the CT (Clustering Table). In one group, CT extracts the common similarity of the tenants in the group to avoid the complexity of using ET. Then SER (Schema Efficiency Ratio) and DER (Data Efficiency Ratio) are described to control tenants' adscription into their groups. Experiments are also conducted to show the improvement of ET.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Session 20: Ubi/cloud computing Localization based on active learning for cognitive radio networks A dual operating frequency band periodic half-width microstrip leaky-wave antenna End-to-end flow inference of encrypted MANET SER performance of opportunistic relaying with direct link using antenna selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1