从语义合成机器代码

Venkatesh Srinivasan, T. Reps
{"title":"从语义合成机器代码","authors":"Venkatesh Srinivasan, T. Reps","doi":"10.1145/2737924.2737960","DOIUrl":null,"url":null,"abstract":"In this paper, we present a technique to synthesize machine-code instructions from a semantic specification, given as a Quantifier-Free Bit-Vector (QFBV) logic formula. Our technique uses an instantiation of the Counter-Example Guided Inductive Synthesis (CEGIS) framework, in combination with search-space pruning heuristics to synthesize instruction-sequences. To counter the exponential cost inherent in enumerative synthesis, our technique uses a divide-and-conquer strategy to break the input QFBV formula into independent sub-formulas, and synthesize instructions for the sub-formulas. Synthesizers created by our technique could be used to create semantics-based binary rewriting tools such as optimizers, partial evaluators, program obfuscators/de-obfuscators, etc. Our experiments for Intel's IA-32 instruction set show that, in comparison to our baseline algorithm, our search-space pruning heuristics reduce the synthesis time by a factor of 473, and our divide-and-conquer strategy reduces the synthesis time by a further 3 to 5 orders of magnitude.","PeriodicalId":104101,"journal":{"name":"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Synthesis of machine code from semantics\",\"authors\":\"Venkatesh Srinivasan, T. Reps\",\"doi\":\"10.1145/2737924.2737960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a technique to synthesize machine-code instructions from a semantic specification, given as a Quantifier-Free Bit-Vector (QFBV) logic formula. Our technique uses an instantiation of the Counter-Example Guided Inductive Synthesis (CEGIS) framework, in combination with search-space pruning heuristics to synthesize instruction-sequences. To counter the exponential cost inherent in enumerative synthesis, our technique uses a divide-and-conquer strategy to break the input QFBV formula into independent sub-formulas, and synthesize instructions for the sub-formulas. Synthesizers created by our technique could be used to create semantics-based binary rewriting tools such as optimizers, partial evaluators, program obfuscators/de-obfuscators, etc. Our experiments for Intel's IA-32 instruction set show that, in comparison to our baseline algorithm, our search-space pruning heuristics reduce the synthesis time by a factor of 473, and our divide-and-conquer strategy reduces the synthesis time by a further 3 to 5 orders of magnitude.\",\"PeriodicalId\":104101,\"journal\":{\"name\":\"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2737924.2737960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2737924.2737960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

在本文中,我们提出了一种从语义规范合成机器代码指令的技术,该规范以无量词位向量(QFBV)逻辑公式的形式给出。我们的技术使用反例引导归纳综合(CEGIS)框架的实例化,结合搜索空间修剪启发式来合成指令序列。为了克服枚举综合中固有的指数成本,我们的技术使用分而治之的策略将输入QFBV公式分解为独立的子公式,并为子公式合成指令。通过我们的技术创建的合成器可以用来创建基于语义的二进制重写工具,如优化器、部分求值器、程序混淆器/去混淆器等。我们对Intel的IA-32指令集进行的实验表明,与我们的基线算法相比,我们的搜索空间剪枝启发式算法将合成时间减少了473倍,而我们的分治策略将合成时间进一步减少了3到5个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis of machine code from semantics
In this paper, we present a technique to synthesize machine-code instructions from a semantic specification, given as a Quantifier-Free Bit-Vector (QFBV) logic formula. Our technique uses an instantiation of the Counter-Example Guided Inductive Synthesis (CEGIS) framework, in combination with search-space pruning heuristics to synthesize instruction-sequences. To counter the exponential cost inherent in enumerative synthesis, our technique uses a divide-and-conquer strategy to break the input QFBV formula into independent sub-formulas, and synthesize instructions for the sub-formulas. Synthesizers created by our technique could be used to create semantics-based binary rewriting tools such as optimizers, partial evaluators, program obfuscators/de-obfuscators, etc. Our experiments for Intel's IA-32 instruction set show that, in comparison to our baseline algorithm, our search-space pruning heuristics reduce the synthesis time by a factor of 473, and our divide-and-conquer strategy reduces the synthesis time by a further 3 to 5 orders of magnitude.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic partial order reduction for relaxed memory models Static detection of asymptotic performance bugs in collection traversals Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation Efficient execution of recursive programs on commodity vector hardware KJS: a complete formal semantics of JavaScript
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1