图形处理单元的平铺累积成本曲面计算

J. Kovanen, T. Sarjakoski
{"title":"图形处理单元的平铺累积成本曲面计算","authors":"J. Kovanen, T. Sarjakoski","doi":"10.1145/2803172","DOIUrl":null,"url":null,"abstract":"Accumulated cost surfaces are used in a variety of fields that employ spatial analysis. Several algorithms have been suggested in the past for solving them efficiently or with minimal errors. Meanwhile, a new wave on the technological frontier has brought about general-purpose computing on GPUs. In this article, we describe how accumulated cost surfaces can be solved with CUDA. To verify the performance of our solution, we performed an experimental comparison against implementations run on a CPU. Our results with realistic cost models indicate that the move to GPUs can engender a speed-up of an order of magnitude.","PeriodicalId":202328,"journal":{"name":"ACM Trans. Spatial Algorithms Syst.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Tilewise Accumulated Cost Surface Computation with Graphics Processing Units\",\"authors\":\"J. Kovanen, T. Sarjakoski\",\"doi\":\"10.1145/2803172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accumulated cost surfaces are used in a variety of fields that employ spatial analysis. Several algorithms have been suggested in the past for solving them efficiently or with minimal errors. Meanwhile, a new wave on the technological frontier has brought about general-purpose computing on GPUs. In this article, we describe how accumulated cost surfaces can be solved with CUDA. To verify the performance of our solution, we performed an experimental comparison against implementations run on a CPU. Our results with realistic cost models indicate that the move to GPUs can engender a speed-up of an order of magnitude.\",\"PeriodicalId\":202328,\"journal\":{\"name\":\"ACM Trans. Spatial Algorithms Syst.\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Trans. Spatial Algorithms Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2803172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Spatial Algorithms Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2803172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

累积成本面用于各种需要空间分析的领域。过去已经提出了几种算法来有效地或以最小的误差解决这些问题。与此同时,技术前沿的新浪潮带来了基于gpu的通用计算。在本文中,我们描述了如何使用CUDA解决累积成本曲面。为了验证我们的解决方案的性能,我们对在CPU上运行的实现进行了实验比较。我们使用现实成本模型的结果表明,转向gpu可以产生一个数量级的速度提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tilewise Accumulated Cost Surface Computation with Graphics Processing Units
Accumulated cost surfaces are used in a variety of fields that employ spatial analysis. Several algorithms have been suggested in the past for solving them efficiently or with minimal errors. Meanwhile, a new wave on the technological frontier has brought about general-purpose computing on GPUs. In this article, we describe how accumulated cost surfaces can be solved with CUDA. To verify the performance of our solution, we performed an experimental comparison against implementations run on a CPU. Our results with realistic cost models indicate that the move to GPUs can engender a speed-up of an order of magnitude.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Riso-Tree: An Efficient and Scalable Index for Spatial Entities in Graph Database Management Systems Predicting Spatio-Temporal Phenomena of Mobile Resources in Sensor Cloud Infrastructure Spatial Interpolation Techniques on Participatory Sensing Data Simulating Our LifeSteps by Example Efficient Processing of Relevant Nearest-Neighbor Queries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1