无线传感器网络中基于动态路由的属性感知数据聚合

Jiao Zhang, Fengyuan Ren, Tao He, Chuang Lin
{"title":"无线传感器网络中基于动态路由的属性感知数据聚合","authors":"Jiao Zhang, Fengyuan Ren, Tao He, Chuang Lin","doi":"10.1109/WOWMOM.2010.5534896","DOIUrl":null,"url":null,"abstract":"Data aggregation has been widely recognized as an efficient method to reduce energy consumption in wireless sensor networks, which can support a wide range of applications such as monitoring temperature, humidity, level, speed etc. The data sampled by the same kind of sensors have much redundancy since the sensor nodes are usually quite dense in wireless sensor networks. To make data aggregation more efficient, the packets with the same attribute, defined as the identifier of different data sampled by different sensors such as temperature sensors, humidity sensors, etc., should be gathered together. However, to the best of our knowledge, present data aggregation mechanisms did not take packet attribute into consideration. In this paper, we take the lead in introducing packet attribute into data aggregation and propose an Attribute-aware Data Aggregation mechanism using Dynamic Routing (ADADR) which can make packets with the same attribute convergent as much as possible and therefore improve the efficiency of data aggregation. This goal cannot be achieved by present static routing schemes employed in most of data aggregation mechanisms since they construct routes before transmitting the sampled data and thus can not dynamically forward packets in response to the variation of packets at intermediate nodes. Hence, we present a potential-based dynamic routing scheme which employs the concept of potential in physics and pheromone in ant colony to achieve our goal. The results of simulations in series of scenarios show that ADADR indeed conserve energy by reducing the average number of transmissions each packet needs to reach the sink and is scalable with regard to the network size.","PeriodicalId":384628,"journal":{"name":"2010 IEEE International Symposium on \"A World of Wireless, Mobile and Multimedia Networks\" (WoWMoM)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Attribute-aware data aggregation using dynamic routing in wireless sensor networks\",\"authors\":\"Jiao Zhang, Fengyuan Ren, Tao He, Chuang Lin\",\"doi\":\"10.1109/WOWMOM.2010.5534896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data aggregation has been widely recognized as an efficient method to reduce energy consumption in wireless sensor networks, which can support a wide range of applications such as monitoring temperature, humidity, level, speed etc. The data sampled by the same kind of sensors have much redundancy since the sensor nodes are usually quite dense in wireless sensor networks. To make data aggregation more efficient, the packets with the same attribute, defined as the identifier of different data sampled by different sensors such as temperature sensors, humidity sensors, etc., should be gathered together. However, to the best of our knowledge, present data aggregation mechanisms did not take packet attribute into consideration. In this paper, we take the lead in introducing packet attribute into data aggregation and propose an Attribute-aware Data Aggregation mechanism using Dynamic Routing (ADADR) which can make packets with the same attribute convergent as much as possible and therefore improve the efficiency of data aggregation. This goal cannot be achieved by present static routing schemes employed in most of data aggregation mechanisms since they construct routes before transmitting the sampled data and thus can not dynamically forward packets in response to the variation of packets at intermediate nodes. Hence, we present a potential-based dynamic routing scheme which employs the concept of potential in physics and pheromone in ant colony to achieve our goal. The results of simulations in series of scenarios show that ADADR indeed conserve energy by reducing the average number of transmissions each packet needs to reach the sink and is scalable with regard to the network size.\",\"PeriodicalId\":384628,\"journal\":{\"name\":\"2010 IEEE International Symposium on \\\"A World of Wireless, Mobile and Multimedia Networks\\\" (WoWMoM)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Symposium on \\\"A World of Wireless, Mobile and Multimedia Networks\\\" (WoWMoM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WOWMOM.2010.5534896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on \"A World of Wireless, Mobile and Multimedia Networks\" (WoWMoM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOWMOM.2010.5534896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

在无线传感器网络中,数据聚合被广泛认为是一种有效的降低能耗的方法,它可以支持广泛的应用,如监测温度、湿度、液位、速度等。由于无线传感器网络中传感器节点密度较大,同一类型传感器采集的数据具有较大的冗余性。为了提高数据聚合的效率,需要将具有相同属性的数据包聚集在一起,这些数据包被定义为不同传感器(如温度传感器、湿度传感器等)采样的不同数据的标识符。然而,据我们所知,现有的数据聚合机制并没有考虑包的属性。本文率先在数据聚合中引入分组属性,提出了一种基于动态路由(ADADR)的属性感知数据聚合机制,使具有相同属性的分组尽可能收敛,从而提高了数据聚合的效率。目前大多数数据聚合机制中采用的静态路由方案无法实现这一目标,因为它们在传输采样数据之前构建路由,因此不能根据中间节点上数据包的变化动态转发数据包。因此,我们提出了一种基于势的动态路由方案,该方案采用了物理学中的势概念和蚁群中的信息素来实现我们的目标。在一系列场景下的模拟结果表明,ADADR确实通过减少每个数据包到达sink所需的平均传输数来节省能量,并且与网络规模相关具有可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Attribute-aware data aggregation using dynamic routing in wireless sensor networks
Data aggregation has been widely recognized as an efficient method to reduce energy consumption in wireless sensor networks, which can support a wide range of applications such as monitoring temperature, humidity, level, speed etc. The data sampled by the same kind of sensors have much redundancy since the sensor nodes are usually quite dense in wireless sensor networks. To make data aggregation more efficient, the packets with the same attribute, defined as the identifier of different data sampled by different sensors such as temperature sensors, humidity sensors, etc., should be gathered together. However, to the best of our knowledge, present data aggregation mechanisms did not take packet attribute into consideration. In this paper, we take the lead in introducing packet attribute into data aggregation and propose an Attribute-aware Data Aggregation mechanism using Dynamic Routing (ADADR) which can make packets with the same attribute convergent as much as possible and therefore improve the efficiency of data aggregation. This goal cannot be achieved by present static routing schemes employed in most of data aggregation mechanisms since they construct routes before transmitting the sampled data and thus can not dynamically forward packets in response to the variation of packets at intermediate nodes. Hence, we present a potential-based dynamic routing scheme which employs the concept of potential in physics and pheromone in ant colony to achieve our goal. The results of simulations in series of scenarios show that ADADR indeed conserve energy by reducing the average number of transmissions each packet needs to reach the sink and is scalable with regard to the network size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Social similarity as a driver for selfish, cooperative and altruistic behavior Assessment of the true risks to the protection of confidential information in the wireless home and office environment Autonomic diagnosis of anomalous network traffic Security and privacy for mobile electronic health monitoring and recording systems Spectrum sharing between IEEE 802.16 and IEEE 802.11 based wireless networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1