求解现代gpu中的稀疏三角形线性系统:一种无同步算法

Ernesto Dufrechu, P. Ezzatti
{"title":"求解现代gpu中的稀疏三角形线性系统:一种无同步算法","authors":"Ernesto Dufrechu, P. Ezzatti","doi":"10.1109/PDP2018.2018.00034","DOIUrl":null,"url":null,"abstract":"Sparse triangular linear systems are ubiquitous in a wide range of science and engineering fields, and represent one of the most important building blocks of Sparse Numerical Lineal Algebra methods. For this reason, their parallel solution has been subject of exhaustive study, and efficient implementations of this kernel can be found for almost every hardware platform. However, the strong data dependencies that serialize a great deal of the execution and the load imbalance inherent to the triangular structure poses serious difficulties for its parallel performance, specially in the context of massively- parallel processors such as GPUs. To this day, the most widespread GPU implementation of this kernel is the one distributed in NVIDIA CUSPARSE library, which relies on a preprocessing stage to determine the parallel execution schedule. Although the solution phase is highly efficient, this strategy pays the cost of constant synchronizations with the CPU. In this work, we present a synchronization-free GPU al- gorithm to solve sparse triangular linear systems for the CSR format. The experimental evaluation shows performance improvements over CUSPARSE and a recently proposed synchronization-free method for the CSC matrix format.","PeriodicalId":333367,"journal":{"name":"2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Solving Sparse Triangular Linear Systems in Modern GPUs: A Synchronization-Free Algorithm\",\"authors\":\"Ernesto Dufrechu, P. Ezzatti\",\"doi\":\"10.1109/PDP2018.2018.00034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse triangular linear systems are ubiquitous in a wide range of science and engineering fields, and represent one of the most important building blocks of Sparse Numerical Lineal Algebra methods. For this reason, their parallel solution has been subject of exhaustive study, and efficient implementations of this kernel can be found for almost every hardware platform. However, the strong data dependencies that serialize a great deal of the execution and the load imbalance inherent to the triangular structure poses serious difficulties for its parallel performance, specially in the context of massively- parallel processors such as GPUs. To this day, the most widespread GPU implementation of this kernel is the one distributed in NVIDIA CUSPARSE library, which relies on a preprocessing stage to determine the parallel execution schedule. Although the solution phase is highly efficient, this strategy pays the cost of constant synchronizations with the CPU. In this work, we present a synchronization-free GPU al- gorithm to solve sparse triangular linear systems for the CSR format. The experimental evaluation shows performance improvements over CUSPARSE and a recently proposed synchronization-free method for the CSC matrix format.\",\"PeriodicalId\":333367,\"journal\":{\"name\":\"2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDP2018.2018.00034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP2018.2018.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

稀疏三角形线性系统广泛应用于科学和工程领域,是稀疏数值线性代数方法的重要组成部分之一。由于这个原因,他们的并行解决方案一直是详尽研究的主题,并且可以在几乎所有硬件平台上找到该内核的有效实现。然而,三角结构固有的数据依赖性和负载不平衡性给其并行性能带来了严重的困难,特别是在gpu等大规模并行处理器的环境中。到目前为止,该内核的最广泛的GPU实现是分布在NVIDIA CUSPARSE库中的一个,它依赖于预处理阶段来确定并行执行时间表。尽管解决方案阶段非常高效,但此策略要付出与CPU持续同步的代价。在这项工作中,我们提出了一种无需同步的GPU算法来求解CSR格式的稀疏三角形线性系统。实验评估表明,与CUSPARSE和最近提出的CSC矩阵格式的无同步方法相比,性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solving Sparse Triangular Linear Systems in Modern GPUs: A Synchronization-Free Algorithm
Sparse triangular linear systems are ubiquitous in a wide range of science and engineering fields, and represent one of the most important building blocks of Sparse Numerical Lineal Algebra methods. For this reason, their parallel solution has been subject of exhaustive study, and efficient implementations of this kernel can be found for almost every hardware platform. However, the strong data dependencies that serialize a great deal of the execution and the load imbalance inherent to the triangular structure poses serious difficulties for its parallel performance, specially in the context of massively- parallel processors such as GPUs. To this day, the most widespread GPU implementation of this kernel is the one distributed in NVIDIA CUSPARSE library, which relies on a preprocessing stage to determine the parallel execution schedule. Although the solution phase is highly efficient, this strategy pays the cost of constant synchronizations with the CPU. In this work, we present a synchronization-free GPU al- gorithm to solve sparse triangular linear systems for the CSR format. The experimental evaluation shows performance improvements over CUSPARSE and a recently proposed synchronization-free method for the CSC matrix format.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TMbarrier: Speculative Barriers Using Hardware Transactional Memory Evaluating the Effect of Multi-Tenancy Patterns in Containerized Cloud-Hosted Content Management System A Generic Learning Multi-agent-System Approach for Spatio-Temporal-, Thermal- and Energy-Aware Scheduling Developing and Using a Geometric Multigrid, Unstructured Grid Mini-Application to Assess Many-Core Architectures Extending PluTo for Multiple Devices by Integrating OpenACC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1