{"title":"电小型超材料启发天线:设计和测量,效率和带宽性能","authors":"R. Ziolkowski, Peng Jin, Chia-Ching Jin","doi":"10.1109/IWAT.2009.4906973","DOIUrl":null,"url":null,"abstract":"Electrically small antennas are a critical enabling technology for a variety of wireless applications. The usually incompatible demands for electrically small, efficient, and broad bandwidth antenna systems often becomes further acerbated by practical demands of multi-functionality, low weight, low cost, and easy manufacturing. A variety of metamaterial-based and metamaterial-inspired antenna systems have been achieved recently that meet many of these demands. The essential features of these antennas and the experimental validation of their performance, especially their overall efficiencies, as well recent design extensions that have bandwidths near the Chu limit, will be reviewed.","PeriodicalId":166472,"journal":{"name":"2009 IEEE International Workshop on Antenna Technology","volume":"292 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Electrically small metamaterial-inspired antennas: Designs and measurements, efficiency and bandwidth performance\",\"authors\":\"R. Ziolkowski, Peng Jin, Chia-Ching Jin\",\"doi\":\"10.1109/IWAT.2009.4906973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrically small antennas are a critical enabling technology for a variety of wireless applications. The usually incompatible demands for electrically small, efficient, and broad bandwidth antenna systems often becomes further acerbated by practical demands of multi-functionality, low weight, low cost, and easy manufacturing. A variety of metamaterial-based and metamaterial-inspired antenna systems have been achieved recently that meet many of these demands. The essential features of these antennas and the experimental validation of their performance, especially their overall efficiencies, as well recent design extensions that have bandwidths near the Chu limit, will be reviewed.\",\"PeriodicalId\":166472,\"journal\":{\"name\":\"2009 IEEE International Workshop on Antenna Technology\",\"volume\":\"292 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Workshop on Antenna Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWAT.2009.4906973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Workshop on Antenna Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWAT.2009.4906973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrically small metamaterial-inspired antennas: Designs and measurements, efficiency and bandwidth performance
Electrically small antennas are a critical enabling technology for a variety of wireless applications. The usually incompatible demands for electrically small, efficient, and broad bandwidth antenna systems often becomes further acerbated by practical demands of multi-functionality, low weight, low cost, and easy manufacturing. A variety of metamaterial-based and metamaterial-inspired antenna systems have been achieved recently that meet many of these demands. The essential features of these antennas and the experimental validation of their performance, especially their overall efficiencies, as well recent design extensions that have bandwidths near the Chu limit, will be reviewed.