基于外源激励自回归移动平均模型的水下目标信号识别

L. Farhi, Farhan Ur Rehman
{"title":"基于外源激励自回归移动平均模型的水下目标信号识别","authors":"L. Farhi, Farhan Ur Rehman","doi":"10.1109/GCWOT49901.2020.9391611","DOIUrl":null,"url":null,"abstract":"This electronic document This paper aims the signal identification of underwater objects using Autoregressive Moving Average with Exogenous excitation model in such a way that the outcome of the model is like actual measurements. It is used for parameter estimation. This will be validated by comparing the output of the actual system with the output generated by ARMX and various other models including autoregressive with exogenous variables and Box-Jenkins models, for the same given input signal. Mean square error criterion will be utilized to evaluate the results in frequency and time domains. Initial results illustrate that ARMX predicts the acoustic scattering response with an accuracy of 97% while ARX provides an accuracy of 78% and BJ model poorly estimates the signal with an accuracy of 35%. ARMX also provides a higher accuracy of detection by 7-8% as compared to existing methodologies hence proving to be a better option than current strategies","PeriodicalId":157662,"journal":{"name":"2020 Global Conference on Wireless and Optical Technologies (GCWOT)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Signal Identification of Underwater Objects Using Autoregressive Moving Average with Exogenous excitation Model\",\"authors\":\"L. Farhi, Farhan Ur Rehman\",\"doi\":\"10.1109/GCWOT49901.2020.9391611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This electronic document This paper aims the signal identification of underwater objects using Autoregressive Moving Average with Exogenous excitation model in such a way that the outcome of the model is like actual measurements. It is used for parameter estimation. This will be validated by comparing the output of the actual system with the output generated by ARMX and various other models including autoregressive with exogenous variables and Box-Jenkins models, for the same given input signal. Mean square error criterion will be utilized to evaluate the results in frequency and time domains. Initial results illustrate that ARMX predicts the acoustic scattering response with an accuracy of 97% while ARX provides an accuracy of 78% and BJ model poorly estimates the signal with an accuracy of 35%. ARMX also provides a higher accuracy of detection by 7-8% as compared to existing methodologies hence proving to be a better option than current strategies\",\"PeriodicalId\":157662,\"journal\":{\"name\":\"2020 Global Conference on Wireless and Optical Technologies (GCWOT)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Global Conference on Wireless and Optical Technologies (GCWOT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GCWOT49901.2020.9391611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Global Conference on Wireless and Optical Technologies (GCWOT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCWOT49901.2020.9391611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在利用外生激励下的自回归移动平均模型对水下目标进行信号识别,使模型的结果与实际测量结果相似。它用于参数估计。这将通过比较实际系统的输出与ARMX和其他各种模型(包括带有外生变量的自回归模型和Box-Jenkins模型)对相同给定输入信号产生的输出来验证。均方误差准则将用于评估频率和时间域的结果。初步结果表明,ARMX模型预测声散射响应的精度为97%,而ARX模型的精度为78%,BJ模型估计信号的精度为35%。与现有方法相比,ARMX还提供了7-8%的更高检测精度,因此被证明是比当前策略更好的选择
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Signal Identification of Underwater Objects Using Autoregressive Moving Average with Exogenous excitation Model
This electronic document This paper aims the signal identification of underwater objects using Autoregressive Moving Average with Exogenous excitation model in such a way that the outcome of the model is like actual measurements. It is used for parameter estimation. This will be validated by comparing the output of the actual system with the output generated by ARMX and various other models including autoregressive with exogenous variables and Box-Jenkins models, for the same given input signal. Mean square error criterion will be utilized to evaluate the results in frequency and time domains. Initial results illustrate that ARMX predicts the acoustic scattering response with an accuracy of 97% while ARX provides an accuracy of 78% and BJ model poorly estimates the signal with an accuracy of 35%. ARMX also provides a higher accuracy of detection by 7-8% as compared to existing methodologies hence proving to be a better option than current strategies
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data Encryption Scheme Based On Adaptive System Comparative Survey on Big data Security Applications, A Blink on Interactive Security Mechanism in Apache Ozone A Review on Key Management and Lightweight Cryptography for IoT IoT Based Technique for Household Rainwater Harvesting IoT based Linear Models Analysis for Demand-Side Management of Energy in Residential Buildings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1