ICDAR 2003强大的阅读比赛

S. Lucas, A. Panaretos, Luis Sosa, Anthony Tang, Shirley Wong, Robert Young
{"title":"ICDAR 2003强大的阅读比赛","authors":"S. Lucas, A. Panaretos, Luis Sosa, Anthony Tang, Shirley Wong, Robert Young","doi":"10.1109/ICDAR.2003.1227749","DOIUrl":null,"url":null,"abstract":"This paper describes the robust reading competitions forICDAR 2003. With the rapid growth in research over thelast few years on recognizing text in natural scenes, thereis an urgent need to establish some common benchmarkdatasets, and gain a clear understanding of the current stateof the art. We use the term robust reading to refer to text imagesthat are beyond the capabilities of current commercialOCR packages. We chose to break down the robust readingproblem into three sub-problems, and run competitionsfor each stage, and also a competition for the best overallsystem. The sub-problems we chose were text locating,character recognition and word recognition.By breaking down the problem in this way, we hope togain a better understanding of the state of the art in eachof the sub-problems. Furthermore, our methodology involvesstoring detailed results of applying each algorithm toeach image in the data sets, allowing researchers to study indepth the strengths and weaknesses of each algorithm. Thetext locating contest was the only one to have any entries.We report the results of this contest, and show cases wherethe leading algorithms succeed and fail.","PeriodicalId":249193,"journal":{"name":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"618","resultStr":"{\"title\":\"ICDAR 2003 robust reading competitions\",\"authors\":\"S. Lucas, A. Panaretos, Luis Sosa, Anthony Tang, Shirley Wong, Robert Young\",\"doi\":\"10.1109/ICDAR.2003.1227749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the robust reading competitions forICDAR 2003. With the rapid growth in research over thelast few years on recognizing text in natural scenes, thereis an urgent need to establish some common benchmarkdatasets, and gain a clear understanding of the current stateof the art. We use the term robust reading to refer to text imagesthat are beyond the capabilities of current commercialOCR packages. We chose to break down the robust readingproblem into three sub-problems, and run competitionsfor each stage, and also a competition for the best overallsystem. The sub-problems we chose were text locating,character recognition and word recognition.By breaking down the problem in this way, we hope togain a better understanding of the state of the art in eachof the sub-problems. Furthermore, our methodology involvesstoring detailed results of applying each algorithm toeach image in the data sets, allowing researchers to study indepth the strengths and weaknesses of each algorithm. Thetext locating contest was the only one to have any entries.We report the results of this contest, and show cases wherethe leading algorithms succeed and fail.\",\"PeriodicalId\":249193,\"journal\":{\"name\":\"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"618\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2003.1227749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2003.1227749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 618

摘要

本文描述了icdar 2003的稳健阅读竞赛。随着近年来自然场景文本识别研究的快速发展,迫切需要建立一些通用的基准数据集,并对当前的技术状况有一个清晰的认识。我们使用稳健读取一词来指超出当前商用ocr软件包能力的文本图像。我们选择将稳健阅读问题分解为三个子问题,并对每个阶段进行比赛,同时也进行最佳整体系统的比赛。我们选择的子问题是文本定位、字符识别和单词识别。通过以这种方式分解问题,我们希望更好地理解每个子问题的现状。此外,我们的方法包括存储将每种算法应用于数据集中的每个图像的详细结果,使研究人员能够深入研究每种算法的优缺点。文本定位比赛是唯一有参赛作品的比赛。我们报告了这次比赛的结果,并展示了领先算法的成功和失败的案例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ICDAR 2003 robust reading competitions
This paper describes the robust reading competitions forICDAR 2003. With the rapid growth in research over thelast few years on recognizing text in natural scenes, thereis an urgent need to establish some common benchmarkdatasets, and gain a clear understanding of the current stateof the art. We use the term robust reading to refer to text imagesthat are beyond the capabilities of current commercialOCR packages. We chose to break down the robust readingproblem into three sub-problems, and run competitionsfor each stage, and also a competition for the best overallsystem. The sub-problems we chose were text locating,character recognition and word recognition.By breaking down the problem in this way, we hope togain a better understanding of the state of the art in eachof the sub-problems. Furthermore, our methodology involvesstoring detailed results of applying each algorithm toeach image in the data sets, allowing researchers to study indepth the strengths and weaknesses of each algorithm. Thetext locating contest was the only one to have any entries.We report the results of this contest, and show cases wherethe leading algorithms succeed and fail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of imperfect OCR on part-of-speech tagging Writer identification using innovative binarised features of handwritten numerals Word searching in CCITT group 4 compressed document images Exploiting reliability for dynamic selection of classi .ers by means of genetic algorithms Investigation of off-line Japanese signature verification using a pattern matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1