集成与测试顺序问题的多目标超启发式评价

Giovani Guizzo, S. Vergilio, A. Pozo
{"title":"集成与测试顺序问题的多目标超启发式评价","authors":"Giovani Guizzo, S. Vergilio, A. Pozo","doi":"10.1109/BRACIS.2015.11","DOIUrl":null,"url":null,"abstract":"Multi-objective evolutionary algorithms (MOEAs) have been successfully applied for solving different software engineering problems. However, adapting and configuring these algorithms for a specific problem can demand significant effort from software engineers. Therefore, to help in this task, a hyper-heuristic, named HITO (Hyper-heuristic for the Integration and Test Order problem) was proposed to adaptively select search operators during the optimization process. HITO was successfully applied using NSGA-II for solving the integration and test order problem. HITO can use two hyper-heuristic selection methods: Choice Function and Multi-armed Bandit. However, a hypotheses behind this study is that HITO does not depend of NSGA-II and can be used with other MOEAs. To this aim, this paper presents results from evaluation experiments comparing the performance of HITO using two different MOEAs: NSGA-II and SPEA2. The results show that HITO is able to outperform both MOEAs.","PeriodicalId":416771,"journal":{"name":"2015 Brazilian Conference on Intelligent Systems (BRACIS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Evaluating a Multi-objective Hyper-Heuristic for the Integration and Test Order Problem\",\"authors\":\"Giovani Guizzo, S. Vergilio, A. Pozo\",\"doi\":\"10.1109/BRACIS.2015.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-objective evolutionary algorithms (MOEAs) have been successfully applied for solving different software engineering problems. However, adapting and configuring these algorithms for a specific problem can demand significant effort from software engineers. Therefore, to help in this task, a hyper-heuristic, named HITO (Hyper-heuristic for the Integration and Test Order problem) was proposed to adaptively select search operators during the optimization process. HITO was successfully applied using NSGA-II for solving the integration and test order problem. HITO can use two hyper-heuristic selection methods: Choice Function and Multi-armed Bandit. However, a hypotheses behind this study is that HITO does not depend of NSGA-II and can be used with other MOEAs. To this aim, this paper presents results from evaluation experiments comparing the performance of HITO using two different MOEAs: NSGA-II and SPEA2. The results show that HITO is able to outperform both MOEAs.\",\"PeriodicalId\":416771,\"journal\":{\"name\":\"2015 Brazilian Conference on Intelligent Systems (BRACIS)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Brazilian Conference on Intelligent Systems (BRACIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BRACIS.2015.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2015.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

多目标进化算法(moea)已成功地应用于解决各种软件工程问题。然而,针对特定问题调整和配置这些算法可能需要软件工程师付出巨大的努力。为此,提出了一种超启发式算法HITO (hyperheuristic for the Integration and Test Order problem),用于优化过程中自适应地选择搜索算子。利用NSGA-II成功地应用HITO解决了集成和测试顺序问题。HITO可以使用两种超启发式选择方法:选择函数和多臂强盗。然而,本研究背后的假设是HITO不依赖于NSGA-II,可以与其他moea一起使用。为此,本文给出了使用NSGA-II和SPEA2两种不同的moea对HITO性能进行比较的评估实验结果。结果表明,HITO能够优于这两种moea。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating a Multi-objective Hyper-Heuristic for the Integration and Test Order Problem
Multi-objective evolutionary algorithms (MOEAs) have been successfully applied for solving different software engineering problems. However, adapting and configuring these algorithms for a specific problem can demand significant effort from software engineers. Therefore, to help in this task, a hyper-heuristic, named HITO (Hyper-heuristic for the Integration and Test Order problem) was proposed to adaptively select search operators during the optimization process. HITO was successfully applied using NSGA-II for solving the integration and test order problem. HITO can use two hyper-heuristic selection methods: Choice Function and Multi-armed Bandit. However, a hypotheses behind this study is that HITO does not depend of NSGA-II and can be used with other MOEAs. To this aim, this paper presents results from evaluation experiments comparing the performance of HITO using two different MOEAs: NSGA-II and SPEA2. The results show that HITO is able to outperform both MOEAs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hyper-Heuristic for the Environmental/Economic Dispatch Optimization Problem Evaluating Methods for Constant Optimization of Symbolic Regression Benchmark Problems A Set-Medoids Vector Batch SOM Algorithm Based on Multiple Dissimilarity Matrices Desire: A Dynamic Approach for Exploratory Search Results Recommendation Dyna-MLAC: Trading Computational and Sample Complexities in Actor-Critic Reinforcement Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1