集覆盖问题的一种新的掩码表示及其在测试集最小化中的应用

S. Yoo
{"title":"集覆盖问题的一种新的掩码表示及其在测试集最小化中的应用","authors":"S. Yoo","doi":"10.1109/SSBSE.2010.12","DOIUrl":null,"url":null,"abstract":"Multi-Objective Set Cover problem forms the basis of many optimisation problems in software testing because the concept of code coverage is based on the set theory. This paper presents Mask-Coding, a novel representation of solutions for set cover optimisation problems that explores the problem space rather than the solution space. The new representation is empirically evaluated with set cover problems formulated from real code coverage data. The results show that Mask-Coding representation can improve both the convergence and diversity of the Pareto-efficient solution set of the multi-objective set cover optimisation.","PeriodicalId":309806,"journal":{"name":"2nd International Symposium on Search Based Software Engineering","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"A Novel Mask-Coding Representation for Set Cover Problems with Applications in Test Suite Minimisation\",\"authors\":\"S. Yoo\",\"doi\":\"10.1109/SSBSE.2010.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-Objective Set Cover problem forms the basis of many optimisation problems in software testing because the concept of code coverage is based on the set theory. This paper presents Mask-Coding, a novel representation of solutions for set cover optimisation problems that explores the problem space rather than the solution space. The new representation is empirically evaluated with set cover problems formulated from real code coverage data. The results show that Mask-Coding representation can improve both the convergence and diversity of the Pareto-efficient solution set of the multi-objective set cover optimisation.\",\"PeriodicalId\":309806,\"journal\":{\"name\":\"2nd International Symposium on Search Based Software Engineering\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2nd International Symposium on Search Based Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSBSE.2010.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2nd International Symposium on Search Based Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSBSE.2010.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

多目标集合覆盖问题构成了软件测试中许多优化问题的基础,因为代码覆盖的概念是基于集合理论的。本文提出了掩码编码,这是集盖优化问题的一种新颖的解表示,它探索的是问题空间而不是解空间。用从实际代码覆盖数据推导出的集覆盖问题对新表示进行了经验评价。结果表明,掩码表示可以提高多目标集覆盖优化pareto有效解集的收敛性和多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Mask-Coding Representation for Set Cover Problems with Applications in Test Suite Minimisation
Multi-Objective Set Cover problem forms the basis of many optimisation problems in software testing because the concept of code coverage is based on the set theory. This paper presents Mask-Coding, a novel representation of solutions for set cover optimisation problems that explores the problem space rather than the solution space. The new representation is empirically evaluated with set cover problems formulated from real code coverage data. The results show that Mask-Coding representation can improve both the convergence and diversity of the Pareto-efficient solution set of the multi-objective set cover optimisation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using Search Methods for Selecting and Combining Software Sensors to Improve Fault Detection in Autonomic Systems AUSTIN: A Tool for Search Based Software Testing for the C Language and Its Evaluation on Deployed Automotive Systems Ant Colony Optimization for the Next Release Problem: A Comparative Study Search-based Resource Scheduling for Bug Fixing Tasks Test Case Selection Method for Emergency Changes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1