微内核间歇系统的自适应检查点策略

Yen-Ting Chen, Han-Xiang Liu, Yuan-Hao Chang, Yu-Pei Liang, W. Shih
{"title":"微内核间歇系统的自适应检查点策略","authors":"Yen-Ting Chen, Han-Xiang Liu, Yuan-Hao Chang, Yu-Pei Liang, W. Shih","doi":"10.1145/3531437.3539705","DOIUrl":null,"url":null,"abstract":"Intermittent systems are usually energy-harvesting embedded systems that harvest energy from ambient environment and perform computation intermittently. Due to the unreliable power, these intermittent systems typically adopt different checkpointing strategies for ensuring the data consistency and execution progress after the systems are resumed from unpredictable power failures. Existing checkpointing strategies are usually suitable for bare-metal intermittent systems with short run time. Due to the improvement of energy-harvesting techniques, intermittent systems are having longer run time and better computation power, so that more and more intermittent systems tend to function with a microkernel for handling more/multiple tasks at the same time. However, existing checkpointing strategies were not designed for (or aware of) such microkernel-based intermittent systems that support the running of multiple tasks, and thus have poor performance on preserving the execution progress. To tackle this issue, we propose a design, called self-adaptive checkpointing strategy (SACS), tailored for microkernel-based intermittent systems. By leveraging the time-slicing scheduler, the proposed design dynamically adjust the checkpointing interval at both run time and reboot time, so as to improve the system performance by achieving a good balance between the execution progress and the number of performed checkpoints. A series of experiments was conducted based on a development board of Texas Instrument (TI) with well-known benchmarks. Compared to the state-of-the-art designs, experiment results show that our design could reduce the execution time by at least 46.8% under different conditions of ambient environment while maintaining the number of performed checkpoints in an acceptable scale.","PeriodicalId":116486,"journal":{"name":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SACS: A Self-Adaptive Checkpointing Strategy for Microkernel-Based Intermittent Systems\",\"authors\":\"Yen-Ting Chen, Han-Xiang Liu, Yuan-Hao Chang, Yu-Pei Liang, W. Shih\",\"doi\":\"10.1145/3531437.3539705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intermittent systems are usually energy-harvesting embedded systems that harvest energy from ambient environment and perform computation intermittently. Due to the unreliable power, these intermittent systems typically adopt different checkpointing strategies for ensuring the data consistency and execution progress after the systems are resumed from unpredictable power failures. Existing checkpointing strategies are usually suitable for bare-metal intermittent systems with short run time. Due to the improvement of energy-harvesting techniques, intermittent systems are having longer run time and better computation power, so that more and more intermittent systems tend to function with a microkernel for handling more/multiple tasks at the same time. However, existing checkpointing strategies were not designed for (or aware of) such microkernel-based intermittent systems that support the running of multiple tasks, and thus have poor performance on preserving the execution progress. To tackle this issue, we propose a design, called self-adaptive checkpointing strategy (SACS), tailored for microkernel-based intermittent systems. By leveraging the time-slicing scheduler, the proposed design dynamically adjust the checkpointing interval at both run time and reboot time, so as to improve the system performance by achieving a good balance between the execution progress and the number of performed checkpoints. A series of experiments was conducted based on a development board of Texas Instrument (TI) with well-known benchmarks. Compared to the state-of-the-art designs, experiment results show that our design could reduce the execution time by at least 46.8% under different conditions of ambient environment while maintaining the number of performed checkpoints in an acceptable scale.\",\"PeriodicalId\":116486,\"journal\":{\"name\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3531437.3539705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3531437.3539705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

间歇系统通常是从周围环境中获取能量并间歇地进行计算的能量收集嵌入式系统。由于电源不可靠,这些间歇性系统通常采用不同的检查点策略,以确保系统从不可预测的电源故障恢复后的数据一致性和执行进度。现有的检查点策略通常适用于运行时间短的裸机间歇系统。由于能量收集技术的改进,间歇系统具有更长的运行时间和更好的计算能力,因此越来越多的间歇系统倾向于使用微内核同时处理更多/多个任务。然而,现有的检查点策略并不是为(或意识到)这种支持多任务运行的基于微内核的间歇系统而设计的,因此在保留执行进度方面性能很差。为了解决这个问题,我们提出了一种设计,称为自适应检查点策略(SACS),为基于微内核的间歇系统量身定制。通过利用时间切片调度器,所提出的设计在运行时和重新启动时动态调整检查点间隔,从而通过在执行进度和执行检查点数量之间实现良好的平衡来提高系统性能。在德州仪器(TI)的开发板上进行了一系列的实验。实验结果表明,在不同的环境条件下,我们的设计可以将执行时间减少至少46.8%,同时将执行的检查点数量保持在可接受的范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SACS: A Self-Adaptive Checkpointing Strategy for Microkernel-Based Intermittent Systems
Intermittent systems are usually energy-harvesting embedded systems that harvest energy from ambient environment and perform computation intermittently. Due to the unreliable power, these intermittent systems typically adopt different checkpointing strategies for ensuring the data consistency and execution progress after the systems are resumed from unpredictable power failures. Existing checkpointing strategies are usually suitable for bare-metal intermittent systems with short run time. Due to the improvement of energy-harvesting techniques, intermittent systems are having longer run time and better computation power, so that more and more intermittent systems tend to function with a microkernel for handling more/multiple tasks at the same time. However, existing checkpointing strategies were not designed for (or aware of) such microkernel-based intermittent systems that support the running of multiple tasks, and thus have poor performance on preserving the execution progress. To tackle this issue, we propose a design, called self-adaptive checkpointing strategy (SACS), tailored for microkernel-based intermittent systems. By leveraging the time-slicing scheduler, the proposed design dynamically adjust the checkpointing interval at both run time and reboot time, so as to improve the system performance by achieving a good balance between the execution progress and the number of performed checkpoints. A series of experiments was conducted based on a development board of Texas Instrument (TI) with well-known benchmarks. Compared to the state-of-the-art designs, experiment results show that our design could reduce the execution time by at least 46.8% under different conditions of ambient environment while maintaining the number of performed checkpoints in an acceptable scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Domain-Specific System-On-Chip Design for Energy Efficient Wearable Edge AI Applications HOGEye: Neural Approximation of HOG Feature Extraction in RRAM-Based 3D-Stacked Image Sensors Improving Performance and Power by Co-Optimizing Middle-of-Line Routing, Pin Pattern Generation, and Contact over Active Gates in Standard Cell Layout Synthesis Exploiting successive identical words and differences with dynamic bases for effective compression in Non-Volatile Memories Canopy: A CNFET-based Process Variation Aware Systolic DNN Accelerator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1