基于SOM神经网络的南斯拉夫气候数据聚类

I. Reljin, B. Reljin, G. Jovanović
{"title":"基于SOM神经网络的南斯拉夫气候数据聚类","authors":"I. Reljin, B. Reljin, G. Jovanović","doi":"10.1109/NEUREL.2002.1057998","DOIUrl":null,"url":null,"abstract":"The climate data are In the form of spatial-temporal fields. The most popular method for analyzing such signals is the empirical orthogonal functions (EOF) method. The method is based on the eigenvectors of the spatial cross-covariance matrix of a meteorological field. The EOF method, being linear, is optimal for feature extraction if the data are well characterized by a set of orthogonal structures or functions. Since the dynamics of climate are nonlinear the EOF may become inefficient. Several nonlinear methods for analyzing such fields are known. Here, the nonlinear analysis by using a neural network of the self-organizing map (SOM) structure is applied on the precipitation and the temperature data observed in the region of Yugoslavia.","PeriodicalId":347066,"journal":{"name":"6th Seminar on Neural Network Applications in Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Clustering of climate data in Yugoslavia by using the SOM neural network\",\"authors\":\"I. Reljin, B. Reljin, G. Jovanović\",\"doi\":\"10.1109/NEUREL.2002.1057998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The climate data are In the form of spatial-temporal fields. The most popular method for analyzing such signals is the empirical orthogonal functions (EOF) method. The method is based on the eigenvectors of the spatial cross-covariance matrix of a meteorological field. The EOF method, being linear, is optimal for feature extraction if the data are well characterized by a set of orthogonal structures or functions. Since the dynamics of climate are nonlinear the EOF may become inefficient. Several nonlinear methods for analyzing such fields are known. Here, the nonlinear analysis by using a neural network of the self-organizing map (SOM) structure is applied on the precipitation and the temperature data observed in the region of Yugoslavia.\",\"PeriodicalId\":347066,\"journal\":{\"name\":\"6th Seminar on Neural Network Applications in Electrical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"6th Seminar on Neural Network Applications in Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2002.1057998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"6th Seminar on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2002.1057998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

气候资料以时空场的形式呈现。分析此类信号最常用的方法是经验正交函数(EOF)方法。该方法基于气象场空间交叉协方差矩阵的特征向量。如果数据被一组正交结构或函数很好地表征,则EOF方法是线性的,是特征提取的最佳方法。由于气候动力学是非线性的,EOF可能变得低效。目前已知的几种分析这种场的非线性方法。本文利用自组织映射(SOM)结构的神经网络对南斯拉夫地区的降水和温度观测资料进行非线性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clustering of climate data in Yugoslavia by using the SOM neural network
The climate data are In the form of spatial-temporal fields. The most popular method for analyzing such signals is the empirical orthogonal functions (EOF) method. The method is based on the eigenvectors of the spatial cross-covariance matrix of a meteorological field. The EOF method, being linear, is optimal for feature extraction if the data are well characterized by a set of orthogonal structures or functions. Since the dynamics of climate are nonlinear the EOF may become inefficient. Several nonlinear methods for analyzing such fields are known. Here, the nonlinear analysis by using a neural network of the self-organizing map (SOM) structure is applied on the precipitation and the temperature data observed in the region of Yugoslavia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The neural compensator for advance vehicle controller Effect of magnetic stimulation of pineal complex of the brain on Na,K-ATPase in experimental Alzheimer's disease Foundations of predictive data mining Application of cellular neural networks in stress analysis of prismatic bars subjected to torsion Neural network models based on small data sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1